Skip to main content

Library of standard monitoring hooks for the Tornado framework

Project description

[![Build Status](https://travis-ci.org/uber/mutornadomon.png)](https://travis-ci.org/uber/mutornadomon)
[![Coverage Status](https://coveralls.io/repos/uber/mutornadomon/badge.svg?branch=master&service=github)](https://coveralls.io/github/uber/mutornadomon?branch=master)

# mutornadomon

**µtornadomon** is a library designed to be used with Tornado web applications. It adds an endpoint
(`/mutornadomon`) to HTTP servers which outputs application statistics for use with standard metric
collectors.

# Usage

The monitor is initialized using `mutornadomon.config.initialize_mutornadomon`.

## Exposing an HTTP endpoint

If you only pass a tornado web application, it will include request/response statistics,
and expose an HTTP endpoint for polling by external processes:

```
from mutornadomon.config import initialize_mutornadomon
import signal

[...]

application = tornado.web.Application(...)
monitor = initialize_mutornadomon(application)

def shut_down(*args):
monitor.stop()
some_other_application_stop_function()
tornado.ioloop.IOLoop.current().stop()

for sig in (signal.SIGQUIT, signal.SIGINT, signal.SIGTERM):
signal.signal(sig, shut_down)
```

This will add a `/mutornadomon` endpoint to the web application.

Here is an example request to that endpoint:

```
$ curl http://localhost:8080/mutornadomon
{"process": {"uptime": 38.98995113372803, "num_fds": 8, "meminfo": {"rss_bytes": 14020608, "vsz_bytes": 2530562048}, "cpu": {"num_threads": 1, "system_time": 0.049356776, "user_time": 0.182635456}}, "max_gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": 0.0006290912628173773}, "min_gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": -0.004179096221923834}, "gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": 0.0006290912628173773}, "counters": {"callbacks": 388, "requests": 6, "localhost_requests": 6, "private_requests": 6}}
```

If you want to add your own metrics, you can do so by calling the `.kv()` or
`.count()` methods on the monitor object at any time.

The HTTP endpoint is restricted to only respond to request from loopback.

## Providing a publishing callback

Alternatively, instead of polling the HTTP interface, you can pass in a `publisher` callback:

```
import pprint

def publisher(metrics):
pprint.pprint(metrics)

monitor = initialize_mutornadomon(application, publisher=publisher)
```

By default, this will call the publisher callback every 10 seconds.
To override this pass the `publish_interval` parameter (in miliseconds).

## Monitoring non-web applications

If you don't pass an application object, other stats can still be collected:

```
import pprint

def publisher(metrics):
pprint.pprint(metrics)

monitor = initialize_mutornadomon(publisher=publisher)
```

This only works with the publisher callback interface.

Project details


Release history Release notifications

This version
History Node

0.4.4

History Node

0.4.3

History Node

0.4.2

History Node

0.3.3

History Node

0.2.0

History Node

0.1.9

History Node

0.1.8

History Node

0.1.7

History Node

0.1.6

History Node

0.1.5

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
mutornadomon-0.4.4-py2-none-any.whl (13.2 kB) Copy SHA256 hash SHA256 Wheel py2 Sep 8, 2016
mutornadomon-0.4.4.tar.gz (9.3 kB) Copy SHA256 hash SHA256 Source None Sep 8, 2016

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page