Skip to main content

This is a tool for automated experimental metrics statistics and visualization

Project description

MetricVisualizer - for easy managing performance metric

PyPI - Python Version PyPI Downloads Downloads Downloads

用法说明 Usage and Examples

Automated metric visualization for comparison experiments

  • Box plot
  • Trajectory plot
  • Scatter plot
  • Bar plot
  • Violin plot
  • Scott-Knott rank test plot
  • A12 effect size plot
  • Wilconxon Rank test
  • On the way

Install

If you want to make tikz(latex) plots, you need to install texlive (other latex release version are not tested).

pip install mvis

[Bash] Instant Visualization of MetricVisualizer file (named example.mv)

mvis example.mv

假设存在多组对比实验(或者一组参数设置),则称之为trial,每组实验存在多个metric(例如AUC,Accuracy,F1,Loss等), 每组参照实验重复n词,则使用以下方法监听实验结果(监听结束后可自动绘制图形): Assume that there exist multiple sets of comparison experiments (or a set of parameter settings), called trials, with multiple metrics (e.g., AUC, accuracy, F1, loss, etc.) for each set of experiments. Repeat n words for each set of reference experiments, and then listen to the results of the experiments using the following method.


```html
 -------------------- Metric Summary --------------------
╒══════════╤═════════╤══════════════════════════════════════════════════════════════╤═════════════════════════════════════════════════════════════╕
│ Metric   │ Trial   │ Values                                                       │ Summary                                                     │
╞══════════╪═════════╪══════════════════════════════════════════════════════════════╪═════════════════════════════════════════════════════════════╡
│ Metric-1 │ trial-0 │ [0.35, 0.65, 0.67, 0.51, 0.04, 0.43, 0.46, 0.58, 0.11, 0.66] │ ['Avg:0.45, Median: 0.48, IQR: 0.22, Max: 0.67, Min: 0.04'] │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-1 │ trial-1 │ [0.52, 0.1, 0.11, 0.86, 0.49, 0.7, 0.77, 0.96, 0.16, 0.65]   │ ['Avg:0.53, Median: 0.58, IQR: 0.41, Max: 0.96, Min: 0.1']  │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-1 │ trial-2 │ [0.73, 0.99, 0.13, 0.72, 0.63, 0.61, 0.14, 0.85, 0.71, 0.86] │ ['Avg:0.64, Median: 0.72, IQR: 0.17, Max: 0.99, Min: 0.13'] │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-1 │ trial-3 │ [0.99, 0.69, 0.86, 0.2, 0.4, 0.1, 0.05, 0.07, 0.95, 0.31]    │ ['Avg:0.46, Median: 0.36, IQR: 0.62, Max: 0.99, Min: 0.05'] │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-1 │ trial-4 │ [0.58, 0.95, 0.73, 0.63, 0.04, 0.19, 0.5, 0.9, 0.64, 0.89]   │ ['Avg:0.6, Median: 0.64, IQR: 0.27, Max: 0.95, Min: 0.04']  │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-2 │ trial-0 │ [1.58, 1.32, 1.98, 1.76, 1.31, 1.6, 1.6, 1.22, 1.3, 1.19]    │ ['Avg:1.49, Median: 1.45, IQR: 0.29, Max: 1.98, Min: 1.19'] │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-2 │ trial-1 │ [1.88, 1.67, 1.77, 1.94, 1.01, 1.6, 1.25, 1.63, 1.62, 1.91]  │ ['Avg:1.63, Median: 1.65, IQR: 0.21, Max: 1.94, Min: 1.01'] │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-2 │ trial-2 │ [1.4, 1.94, 1.28, 1.78, 1.01, 1.08, 1.21, 1.82, 1.78, 1.18]  │ ['Avg:1.45, Median: 1.34, IQR: 0.59, Max: 1.94, Min: 1.01'] │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-2 │ trial-3 │ [1.79, 1.35, 1.14, 1.5, 1.73, 1.06, 1.98, 1.75, 1.07, 1.49]  │ ['Avg:1.49, Median: 1.5, IQR: 0.49, Max: 1.98, Min: 1.06']  │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-2 │ trial-4 │ [1.93, 1.81, 1.18, 1.08, 1.57, 1.85, 1.95, 1.94, 1.58, 1.35] │ ['Avg:1.62, Median: 1.7, IQR: 0.43, Max: 1.95, Min: 1.08']  │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-3 │ trial-0 │ [2.85, 2.87, 2.3, 2.05, 2.86, 2.34, 2.85, 2.3, 2.95, 2.53]   │ ['Avg:2.59, Median: 2.69, IQR: 0.54, Max: 2.95, Min: 2.05'] │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-3 │ trial-1 │ [2.31, 2.41, 2.34, 2.96, 2.48, 2.68, 2.99, 2.94, 2.01, 2.46] │ ['Avg:2.56, Median: 2.47, IQR: 0.44, Max: 2.99, Min: 2.01'] │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-3 │ trial-2 │ [2.65, 2.5, 2.68, 2.34, 2.32, 2.61, 2.61, 2.88, 2.86, 2.36]  │ ['Avg:2.58, Median: 2.61, IQR: 0.24, Max: 2.88, Min: 2.32'] │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-3 │ trial-3 │ [2.29, 2.12, 2.4, 2.81, 2.5, 2.54, 2.82, 2.61, 2.45, 2.44]   │ ['Avg:2.5, Median: 2.48, IQR: 0.16, Max: 2.82, Min: 2.12']  │
├──────────┼─────────┼──────────────────────────────────────────────────────────────┼─────────────────────────────────────────────────────────────┤
│ Metric-3 │ trial-4 │ [2.41, 2.12, 2.31, 2.29, 2.46, 2.95, 2.74, 2.66, 2.34, 2.65] │ ['Avg:2.49, Median: 2.44, IQR: 0.33, Max: 2.95, Min: 2.12'] │
╘══════════╧═════════╧══════════════════════════════════════════════════════════════╧═════════════════════════════════════════════════════════════╛
-------------------- Metric Summary --------------------

Auto-Plot in Tikz and Matplotlib format

see more auto-previews in example

Traj Plot matplotlib version

traj_plot_example

Box Plot matplotlib version

box_plot_example

Violin Plot matplotlib version

violin_plot_example

A12 Plot matplotlib version

A12_plot_example

Scott-knot Plot matplotlib version

Scott-knot_plot_example

Average Bar Plot matplotlib version

average_plot_example

Sum Bar Plot matplotlib version

sum bar_plot_example

Real Usage Example in PyABSA

To analyze the impact of max_seq_len, we can use MetricVisualizer as following:

pip install pyabsa  # install pyabsa
import random
import os
from metric_visualizer import MetricVisualizer

from pyabsa.functional import Trainer
from pyabsa.functional import APCConfigManager
from pyabsa.functional import ABSADatasetList
from pyabsa.functional import APCModelList

config = APCConfigManager.get_config()
config.model = APCModelList.FAST_LCF_BERT
config.lcf = 'cdw'
config.seed = [random.randint(0, 10000) for _ in range(3)]  # each trial repeats with different seed

MV = MetricVisualizer()
config.MV = MV

max_seq_lens = [60, 70, 80, 90, 100]

for max_seq_len in max_seq_lens:
    config.max_seq_len = max_seq_len
    dataset = ABSADatasetList.Laptop14
    Trainer(config=config,
            dataset=dataset,  # train set and test set will be automatically detected
            auto_device=True  # automatic choose CUDA or CPU
            )
    config.MV.next_trial()

save_prefix = os.getcwd()
MV.summary(save_path=save_prefix, no_print=True)

MV.traj_plot_by_trial(save_path=save_prefix, xticks=max_seq_lens)
MV.violin_plot_by_trial(save_path=save_prefix, xticks=max_seq_lens)
MV.box_plot_by_trial(save_path=save_prefix, xticks=max_seq_lens)
MV.avg_bar_plot_by_trial(save_path=save_prefix, xticks=max_seq_lens)
MV.sum_bar_plot_by_trial(save_path=save_prefix, xticks=max_seq_lens)
MV.scott_knott_plot(save_path=save_prefix, xticks=max_seq_lens, minorticks_on=False)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

mvis-0.0.2-py3-none-any.whl (4.1 kB view details)

Uploaded Python 3

File details

Details for the file mvis-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: mvis-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 4.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for mvis-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 48da87e5cb7eb980aa5bb08c7f4676c83e447261769c3378b9c0786ede37a2b4
MD5 096728f9412d6f2e55c8eededab455ae
BLAKE2b-256 510516f82c636358ac088c60261bb499b8aa8bae96dc142ab96c07c7c32af8e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page