Skip to main content

Dust in the Milky Way

Project description

Dust in 3D in the Milky Way


Installation

Install the latest released version using pip:

pip install mwdust

To install the latest development version, clone the repository and do

python setup.py install

or

python setup.py install --user

Using custom implementations of necessary HEALPIx functions, basic evaluation of extinction is available on all platforms (Linux, Mac OS, Windows) for all dust maps. However, some HEALPIx-based features like plotting require healpy, which is unavailable on Windows. Install on Linux/Mac OS for full functionality.

Dust Data

By default, dust maps are download when you use them for the first time. If you define an environment variable DUST_DIR, then all dust data downloaded by the code will be downloaded to this directory. If you do not set the DUST_DIR variable, then mwdust will download data to ~/.mwdust.

The code can download all of the necessary data at by running

from mwdust import download_all
download_all()

Note that some of the maps are very large (multiple GB) and some of the downloads are slow, so this may take a while.

The data are put in subdirectories of a directory DUST_DIR or ~/.mwdust, with roughly the following lay-out:

$DUST_DIR/
   combined15/
      dust-map-3d.h5
   combined19/
      combine19.h5
   green15/
      dust-map-3d.h5
   green17/
      bayestar2017.h5
   green19/
      bayestar2019.h5
   maps/
      SFD_dust_4096_ngp.fits
      SFD_dust_4096_sgp.fits
   marshall06/
      ReadMe
           table1.dat
   sale14/
      Amap.dat
      ReadMe

The data for the Drimmel et al. (2003) map is installed in the code directory, because it is not very large.

Usage

All of the maps can be initialized similar to

import mwdust
drimmel= mwdust.Drimmel03(filter='2MASS H')
combined= mwdust.Combined15(filter='2MASS H')
combined19= mwdust.Combined19(filter='2MASS H')
sfd= mwdust.SFD(filter='2MASS H')

which sets up the Drimmel et al. (2003) map, the combined Bovy et al. (2016) map, an updated version of the combined map using the Green et al. (2019) Bayestar19 map, and the SFD map for the H-band filter. The maps can be evaluate for a given Galactic longitude l, Galactic latitude b, and an array (or scalar) of distances D

drimmel(60.,0.,3.) # inputs are (l,b,D)
array([ 0.38813341])
combined(30.,3.,numpy.array([1.,2.,3.,10.]))
array([ 0.22304147,  0.55687252,  0.86694602,  1.18779507])
# SFD is just the constant SFD extinction
sfd(30.,3.,numpy.array([1.,2.,3.]))
array([ 1.19977335,  1.19977335,  1.19977335])

and they can be plotted as a function of distance at a given (l,b)

combined.plot(55.,0.5) # inputs are (l,b)

(plot not shown). Maps that are derived from the HierarchicalHealpixMap.py class (currently all Green-type maps and the combined maps) can be vectorized to evaluate on array inputs of l, b, D

combined(numpy.array([30.,40.,50.,60.]),numpy.array([3.,4.,3.,6.]),numpy.array([1.,2.,3.,10.]))
array([0.22304147, 0.3780736 , 0.42528571, 0.22258065])

They can also be plotted on the sky using a Mollweide projection at a given distance using

combined.plot_mollweide(5.) # input is distance in kpc

Note that this requires healpy to be installed, so this does not work on Windows.

Supported bandpasses

Currently only a few filters are supported. To obtain E(B-V), specify filter='E(B-V)'. To check what bandpasses are supported on the sf10=True scale (these are all the bandpasses from Table 6 in Schlafly & Finkbeiner 2011), do

from mwdust.util import extCurves
extCurves.avebvsf.keys()

which gives

['Stromgren u',
   'Stromgren v',
   'ACS clear',
   'CTIO R',
   'CTIO V',
   'CTIO U',
   'CTIO I',
   ...]

To check the bandpasses that are supported on the old SFD scale (sf10=False), do

numpy.array(extCurves.avebv.keys())[True-numpy.isnan(extCurves.avebv.values())]

which gives

array(['CTIO R', 'CTIO V', 'CTIO U', 'CTIO I', 'CTIO B', 'DSS-II i',
   'DSS-II g', 'WISE-1', 'WISE-2', 'DSS-II r', 'UKIRT H', 'UKIRT J',
   'UKIRT K', 'IRAC-1', 'IRAC-2', 'IRAC-3', 'IRAC-4', '2MASS H',
   'SDSS r', 'SDSS u', 'SDSS z', 'SDSS g', 'SDSS i', '2MASS Ks',
   '2MASS J'], dtype='|S14')

If no filter is supplied, E(B-V) is returned on the SFD scale if the object is initialized with sf10=True (which tells the code to use re-scalings from Schlafly & Finkbeiner 2011). sf10=True is the default initialization for every map, so be careful in interpreting the raw E(B-V) that come out of the code when not setting filter or when setting filter=None. Only use sf10=False when you have an extinction map in true E(B-V), not SFD E(B-V). No map currently included in this package is in this situation, so using sf10=False is never recommended.

Acknowledging mwdust and its data

When making use of this code in a publication, please cite Bovy et al. (2015a). Also cite the relevant papers for the dust map that you use:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mwdust-1.5.post0.tar.gz (68.4 kB view details)

Uploaded Source

Built Distributions

mwdust-1.5.post0-cp312-cp312-win_amd64.whl (68.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

mwdust-1.5.post0-cp312-cp312-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (132.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

mwdust-1.5.post0-cp312-cp312-macosx_11_0_arm64.whl (79.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mwdust-1.5.post0-cp312-cp312-macosx_10_9_x86_64.whl (85.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

mwdust-1.5.post0-cp311-cp311-win_amd64.whl (68.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

mwdust-1.5.post0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (132.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

mwdust-1.5.post0-cp311-cp311-macosx_11_0_arm64.whl (79.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mwdust-1.5.post0-cp311-cp311-macosx_10_9_x86_64.whl (85.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

mwdust-1.5.post0-cp310-cp310-win_amd64.whl (68.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

mwdust-1.5.post0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (132.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

mwdust-1.5.post0-cp310-cp310-macosx_11_0_arm64.whl (79.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mwdust-1.5.post0-cp310-cp310-macosx_10_9_x86_64.whl (85.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

mwdust-1.5.post0-cp39-cp39-win_amd64.whl (68.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

mwdust-1.5.post0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (132.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

mwdust-1.5.post0-cp39-cp39-macosx_11_0_arm64.whl (79.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mwdust-1.5.post0-cp39-cp39-macosx_10_9_x86_64.whl (85.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

mwdust-1.5.post0-cp38-cp38-win_amd64.whl (68.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

mwdust-1.5.post0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (132.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

mwdust-1.5.post0-cp38-cp38-macosx_11_0_arm64.whl (79.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

mwdust-1.5.post0-cp38-cp38-macosx_10_9_x86_64.whl (85.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file mwdust-1.5.post0.tar.gz.

File metadata

  • Download URL: mwdust-1.5.post0.tar.gz
  • Upload date:
  • Size: 68.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for mwdust-1.5.post0.tar.gz
Algorithm Hash digest
SHA256 44e360ee6cf479f1f61b2bcab625598fa16fbbe44610493f81bcb6d94c565c40
MD5 1cf83ecf53405b5260bfdf65136f6cf4
BLAKE2b-256 ff2345b115ee7ca976bcf9cda0c3d60298424c4164ea2c196bb3b560c836fd27

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8b33dfbeb6f8a540018fa6d3fd521e86d5fd6381bcd5e0236c69c0a5a60ff16c
MD5 688b91e820d98f7cf6a7f2594ce53aa7
BLAKE2b-256 62a43237cc8768defbc71b700779ac37bee534fed848ecd20f94fad0a355dba2

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp312-cp312-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp312-cp312-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73e58f398f4a0cb00d6f9805cc8f0c7bf5281a782a36332b53f73a45b87a4b7f
MD5 78c09d4e42de34e185e1c171d47b531c
BLAKE2b-256 0d78b3cc596068755e6fe73f791a2747f75402e0da6730a7bded64bc25777a23

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1306426cba5da468c1f09458791c677cede5750cc95fe2ce932bc35aa763d64c
MD5 81c6f17d197da68a7c9156b2ed011080
BLAKE2b-256 9c9aeed81b7b74b7767f11ba6125adc8821c64571ee0373d349996c85a697356

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 35066510537150e369a3d955f054c7e8a47c80d7fc41fe4639925f901ce47d37
MD5 fb1cbf214c754802e223d837848a0c31
BLAKE2b-256 280dcf5c190ea6a1e9e5a9ee7cc5ee4fe995475edc03383a4925181a2caf4de8

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cc95afd9747aa084b7b58a79ceb98c70df95c790cb37e5950b4931b2a1db8b5b
MD5 bcbdb6e6435f19c46c7ab801d22a48e7
BLAKE2b-256 a7cf5f13e07faf9a4a4a30be39e2ee98ad14a6a5c39c9ba9f422e553f468470a

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cbc724b67149ed372a5ca3ecc5ffb75972c7081d8da445c171d91d464d999f02
MD5 a71c9d7e8bfbd9c49c789888a8aec023
BLAKE2b-256 6c5a7be2c201ef5a1548fb1300cfbceba841ad5debd47d3a8b6a47050bb325d9

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ed45895747e523ce29e0b2fc8588b0b7903de2b1c312bdb1130e2dc1a3514161
MD5 4d9dfea8fa4d2d2b59ff375a0cccede7
BLAKE2b-256 acaaf9ccccd5ceb4e7f2453de0ada4bac57efd345f54ecf54b6fc43816e913d5

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef9f4697c81c1d4c16d22811ca4bfcba84363dca4ef31549cbed0bdb836778a8
MD5 5d8a0c14ae2549e5016ae93fc4efd823
BLAKE2b-256 fd4605353769598c401ba86f71b2118f03cc544e8bdd231fd8500984cbc8028c

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 833f1ca27f486cf59ad53eb4b5570fba9f9d51db895b24e6fb1299ea2fb86331
MD5 20c769f25793d32c13d666e17e114f6b
BLAKE2b-256 0660cbb95362602576c627061d53969fb5b6bf5c7e3e364cfe1437c22ec80fcd

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3e1f69fb6ac53c360063461cfc9c26608fc0e1b3b74912369c790e9b6a1520c
MD5 c0ee110dbe06fa14b6cd0026756b1dc4
BLAKE2b-256 76e19f2c91a321585df2b69cbceddef27c374eebaf60a1c04fd4022b6ffd735d

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36af9054e8b5fdb250f84186da7fde3b56d00b183f8e02d621dc77edc47e099d
MD5 1670de0591f1b24b0c5c8c5d052c6fc1
BLAKE2b-256 815437e03050672e1f6c9be2c05c3840db2ba095e5fa886c3e9f64ba3173e63d

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47a93bea70dc2ddd8639868b3e4e38464585616191a16100cc104ae338eb05b6
MD5 b08f67427ad94d1e06d87e72f0af4e98
BLAKE2b-256 b30ba5b03640d1a1641d11d383be7616a99c8adedab11aa66ecf6bd5fe8fda8e

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3cbd54588c7e5bf7738f11be3b7272f6423730c107add498fdff336ca8f02c55
MD5 186bfde2bc41d67b6d77cc9bab0bccbb
BLAKE2b-256 a32062d05a3e460e254fb308fecd8301a77c0eaf9ee96bf23561d35337127858

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c97a111b5115fdeb6117c5b1a4f9401eab87839aec28a5e6816d4f4c1ec256e2
MD5 6c47b4166c78982eab00db4a8cb9dac1
BLAKE2b-256 e44521fb27eed0778079017f721e8cea81d1f3cf1ecb736ff0705cfd73d0b4db

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 95a72c80a27585cd691d0387ed845f7fc518b7f6dafd7f21835adf55feb4d42a
MD5 65f1435f24c3725c3aa32d8d0918a7f3
BLAKE2b-256 cd902031bb481e57bee661007f02a79e3b56c06b34cbac84256dd50102c67811

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2b0da0396b927b591d7fc7acbb3d0747ed7908d1b789bf982e1bbb889d322a9
MD5 f92ee74d056a4da8ada26a9d4cca8cfb
BLAKE2b-256 218ce7e85fc5be36a6d547aba2cc65c571c17776dbb0630dc29cf7b83e88317e

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 76f3aeed468903d11ea5802bf0c43ad7eb1cf5c199568b96c9b8e26f7c21dcde
MD5 0c332ae5b1e6b92ae0865aa34e10f03d
BLAKE2b-256 6209b45af1dbc51b709f221a73ead88b0fdce932f049caaf57a062bc562e51c4

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 705d0227f1e2687bc4d8f45c449c21a72f6571ef2f7335c3315a8ae28c9f9cb2
MD5 3beca446e7eae0dd9a02c98adda218a2
BLAKE2b-256 a0532310db69cf980054b8d638912b02769bcf5b383c51507608330d53009be3

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 534fb4e1f563a4e2aba10206517b73756699ecd28af3ce21f75a9ebd1428496d
MD5 c004e82fd091e25cea8949f4f06e03f6
BLAKE2b-256 8b0c7040519057710c084e0af99482210c581d2f0df50c2a0f31ec995a9f980e

See more details on using hashes here.

File details

Details for the file mwdust-1.5.post0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.5.post0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a4f99387b943fe0a77130ad7b5a11b96e6f35d86ea676bfcd57268dac408047
MD5 db62a7edbd215bb2d7e7157964018fbd
BLAKE2b-256 29f0710be9ddf33487a9584ab35f8e3143470b8faa086b42405cf4d28c32998e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page