Skip to main content

Dust in the Milky Way

Project description

Dust in 3D in the Milky Way


Installation

Install the latest released version using pip:

pip install mwdust

To install the latest development version, clone the repository and do

python setup.py install

or

python setup.py install --user

Using custom implementations of necessary HEALPIx functions, basic evaluation of extinction is available on all platforms (Linux, Mac OS, Windows) for all dust maps. However, some HEALPIx-based features like plotting require healpy, which is unavailable on Windows. Install on Linux/Mac OS for full functionality.

Dust Data

By default, dust maps are download when you use them for the first time. If you define an environment variable DUST_DIR, then all dust data downloaded by the code will be downloaded to this directory. If you do not set the DUST_DIR variable, then mwdust will download data to ~/.mwdust.

The code can download all of the necessary data at by running

from mwdust import download_all
download_all()

Note that some of the maps are very large (multiple GB) and some of the downloads are slow, so this may take a while.

The data are put in subdirectories of a directory DUST_DIR or ~/.mwdust, with roughly the following lay-out:

$DUST_DIR/
   combined15/
      dust-map-3d.h5
   combined19/
      combine19.h5
   green15/
      dust-map-3d.h5
   green17/
      bayestar2017.h5
   green19/
      bayestar2019.h5
   zucker25/
      decaps_mean.h5
      decaps_mean_and_samples.h5
   maps/
      SFD_dust_4096_ngp.fits
      SFD_dust_4096_sgp.fits
   marshall06/
      ReadMe
           table1.dat
   sale14/
      Amap.dat
      ReadMe

The data for the Drimmel et al. (2003) map is installed in the code directory, because it is not very large.

Usage

All of the maps can be initialized similar to

import mwdust
drimmel= mwdust.Drimmel03(filter='2MASS H')
combined= mwdust.Combined15(filter='2MASS H')
combined19= mwdust.Combined19(filter='2MASS H')
sfd= mwdust.SFD(filter='2MASS H')

which sets up the Drimmel et al. (2003) map, the combined Bovy et al. (2016) map, an updated version of the combined map using the Green et al. (2019) Bayestar19 map, and the SFD map for the H-band filter. The maps can be evaluate for a given Galactic longitude l, Galactic latitude b, and an array (or scalar) of distances D

drimmel(60.,0.,3.) # inputs are (l,b,D)
array([ 0.38813341])
combined(30.,3.,numpy.array([1.,2.,3.,10.]))
array([ 0.22304147,  0.55687252,  0.86694602,  1.18779507])
# SFD is just the constant SFD extinction
sfd(30.,3.,numpy.array([1.,2.,3.]))
array([ 1.19977335,  1.19977335,  1.19977335])

and they can be plotted as a function of distance at a given (l,b)

combined.plot(55.,0.5) # inputs are (l,b)

(plot not shown). Maps that are derived from the HierarchicalHealpixMap.py class (currently all Green-type maps and the combined maps) can be vectorized to evaluate on array inputs of l, b, D

combined(numpy.array([30.,40.,50.,60.]),numpy.array([3.,4.,3.,6.]),numpy.array([1.,2.,3.,10.]))
array([0.22304147, 0.3780736 , 0.42528571, 0.22258065])

They can also be plotted on the sky using a Mollweide projection at a given distance using

combined.plot_mollweide(5.) # input is distance in kpc

Note that this requires healpy to be installed, so this does not work on Windows.

Supported bandpasses

Currently only a few filters are supported. To obtain E(B-V), specify filter='E(B-V)'. To check what bandpasses are supported on the sf10=True scale (these are all the bandpasses from Table 6 in Schlafly & Finkbeiner 2011), do

from mwdust.util import extCurves
extCurves.avebvsf.keys()

which gives

['Stromgren u',
   'Stromgren v',
   'ACS clear',
   'CTIO R',
   'CTIO V',
   'CTIO U',
   'CTIO I',
   ...]

To check the bandpasses that are supported on the old SFD scale (sf10=False), do

numpy.array(extCurves.avebv.keys())[True-numpy.isnan(extCurves.avebv.values())]

which gives

array(['CTIO R', 'CTIO V', 'CTIO U', 'CTIO I', 'CTIO B', 'DSS-II i',
   'DSS-II g', 'WISE-1', 'WISE-2', 'DSS-II r', 'UKIRT H', 'UKIRT J',
   'UKIRT K', 'IRAC-1', 'IRAC-2', 'IRAC-3', 'IRAC-4', '2MASS H',
   'SDSS r', 'SDSS u', 'SDSS z', 'SDSS g', 'SDSS i', '2MASS Ks',
   '2MASS J'], dtype='|S14')

If no filter is supplied, E(B-V) is returned on the SFD scale if the object is initialized with sf10=True (which tells the code to use re-scalings from Schlafly & Finkbeiner 2011). sf10=True is the default initialization for every map, so be careful in interpreting the raw E(B-V) that come out of the code when not setting filter or when setting filter=None. Only use sf10=False when you have an extinction map in true E(B-V), not SFD E(B-V). No map currently included in this package is in this situation, so using sf10=False is never recommended.

Acknowledging mwdust and its data

When making use of this code in a publication, please cite Bovy et al. (2015a). Also cite the relevant papers for the dust map that you use:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mwdust-1.7.tar.gz (70.0 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

mwdust-1.7-cp314-cp314-win_amd64.whl (72.0 kB view details)

Uploaded CPython 3.14Windows x86-64

mwdust-1.7-cp314-cp314-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (138.8 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mwdust-1.7-cp314-cp314-macosx_11_0_arm64.whl (81.3 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

mwdust-1.7-cp314-cp314-macosx_10_15_x86_64.whl (86.0 kB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

mwdust-1.7-cp313-cp313-win_amd64.whl (71.0 kB view details)

Uploaded CPython 3.13Windows x86-64

mwdust-1.7-cp313-cp313-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (138.8 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mwdust-1.7-cp313-cp313-macosx_11_0_arm64.whl (81.3 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

mwdust-1.7-cp313-cp313-macosx_10_13_x86_64.whl (85.9 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

mwdust-1.7-cp312-cp312-win_amd64.whl (71.0 kB view details)

Uploaded CPython 3.12Windows x86-64

mwdust-1.7-cp312-cp312-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (138.8 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mwdust-1.7-cp312-cp312-macosx_11_0_arm64.whl (81.3 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

mwdust-1.7-cp312-cp312-macosx_10_13_x86_64.whl (85.9 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

mwdust-1.7-cp311-cp311-win_amd64.whl (71.0 kB view details)

Uploaded CPython 3.11Windows x86-64

mwdust-1.7-cp311-cp311-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (138.8 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mwdust-1.7-cp311-cp311-macosx_11_0_arm64.whl (81.3 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

mwdust-1.7-cp311-cp311-macosx_10_9_x86_64.whl (85.4 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

mwdust-1.7-cp310-cp310-win_amd64.whl (71.0 kB view details)

Uploaded CPython 3.10Windows x86-64

mwdust-1.7-cp310-cp310-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (138.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mwdust-1.7-cp310-cp310-macosx_11_0_arm64.whl (81.3 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

mwdust-1.7-cp310-cp310-macosx_10_9_x86_64.whl (85.4 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

mwdust-1.7-cp39-cp39-win_amd64.whl (71.0 kB view details)

Uploaded CPython 3.9Windows x86-64

mwdust-1.7-cp39-cp39-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (138.8 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mwdust-1.7-cp39-cp39-macosx_11_0_arm64.whl (81.3 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

mwdust-1.7-cp39-cp39-macosx_10_9_x86_64.whl (85.4 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

mwdust-1.7-cp38-cp38-win_amd64.whl (70.9 kB view details)

Uploaded CPython 3.8Windows x86-64

mwdust-1.7-cp38-cp38-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl (138.6 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64manylinux: glibc 2.28+ x86-64

mwdust-1.7-cp38-cp38-macosx_11_0_arm64.whl (81.1 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

mwdust-1.7-cp38-cp38-macosx_10_9_x86_64.whl (85.2 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file mwdust-1.7.tar.gz.

File metadata

  • Download URL: mwdust-1.7.tar.gz
  • Upload date:
  • Size: 70.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7.tar.gz
Algorithm Hash digest
SHA256 dac827ea5283ff7bb14730296231337bcd182392b627e59163a940d20cc6960a
MD5 2a739fae7b63432af93a2f454ebb774f
BLAKE2b-256 a76c2d0173c2db3a7e1d1ffc7ad2eeaccf0795f6e8a03f998a39a37985d46745

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: mwdust-1.7-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 72.0 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 5b19f71bfd193c2b708d9a13f625ec6dc5a737ec72ff787f0ba1ce0cb3af3bce
MD5 a3bfb5f1e07160f401b258dd971e31ed
BLAKE2b-256 a8f1402a906829ed8134fb33558ffe2d03105903553e036e3a1c103b7fa4af29

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp314-cp314-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp314-cp314-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2a366ad69054fb27863aff95621f52a602c3869323e8c70494de906e1b1576fa
MD5 922c96736684da9105a701035d46b69c
BLAKE2b-256 a7cd87672231ffa201cd18fb7fbee01c7229dc5af4319996ad5ccdc385e0311a

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 446125ca8dc83e2f2cce10c242160a3507c878c4db0b8418ed389b62fb999264
MD5 b082fc457ec1c76b5f5aa81f819ccf62
BLAKE2b-256 37dc413239c467074420094b1571d7dd583f9ad8b01f32bc27a6574df9f56984

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 183aefef40ef37376fe5c24af0001ee58149f32b17dd2d6c09bbafb6ec357cdb
MD5 1650b199865cf0ac778485b853efecb9
BLAKE2b-256 d4e172a203e131f821f203af7d2224ad683017e138a790066ea47cfd928f88d7

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: mwdust-1.7-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 71.0 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 db4555b2abe69fb0eb9bef4a319ac5c2bf4644d528d0a7d123b8f0caed796d7d
MD5 ee6db86e65c62dd69695c228b3039afc
BLAKE2b-256 fa35c560eed2572fac3dc3774aee92fec9321dfd06c35228c937423e0aedd067

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp313-cp313-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp313-cp313-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 edddd2d84456b860b5de430f0d05398fa0d663fd33699fa89c126b4c7b88f9f1
MD5 a2e6e0f99388dc824a31a120047c95f6
BLAKE2b-256 23d32c91e1a02eacd8bcdd217ad24c950cdb7f3559ba0cbf82dbf55642ec48a8

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df62ff3a50e532aaeb18e1c4cc9662fe973c7c159709c747a9a6f39fe4bd6239
MD5 5a613a7632a902e04a9c19b7d829820b
BLAKE2b-256 caef11df569680defdd23a9d40e0b7ed038ed43943c1688d2359011111e87e0d

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 05c05654f0140ea4af7f1dd38555a636521fc9c34dc48ce11f1cfe1b80413a69
MD5 d1027128e1e90179a0ccc898f4448f62
BLAKE2b-256 021c93bd30b5b41e4ab12ccbf0727646914e28fe62b71e357208ec536750350b

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: mwdust-1.7-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 71.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 13b36c6a023778cc054be0b93b3090785116acaaa72a349825011adcc0a59d38
MD5 1852967177a13a301077ec03806e0120
BLAKE2b-256 4c19c8852edc36e94f1e4c7c503f28c5317c1ac9757e482a42990ef53f483680

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp312-cp312-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp312-cp312-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 abc76f5ff34781f654c1a49693eff4dded19793015ab425c039dc43d82892e6b
MD5 94e56559ddd4097b9befb565df18c35c
BLAKE2b-256 c21029e2ee2f00aec3bcfeeaa85aca494c44cc8601148cf059bb0652417a563b

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 865bc36ddbc0e50aa079b849262775456abc3ad56cec9362ebcc0cfc33ed7759
MD5 19395bf8285be463dc474eed94d914b5
BLAKE2b-256 47c1aebae49e6198948b49978e0c6e03ffab2dab4151114ce84a295e87b69056

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 aea60fcbcc26435290b61bb426ecf5ee49726c71f5273b6832b98d4adc6ab7cd
MD5 b60ce5fa9874f78f85e668b035ed8b1c
BLAKE2b-256 4200a20263149057e15bc2024c31617587052267afddfdec0b1e1971d057c5c8

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: mwdust-1.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 71.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4985a74e093efddc61e8922a9f971bbd48aa6b1c4c2eea9af0fd5efee3a9dee6
MD5 130b7ded21493079b8bb4ac17ae839c4
BLAKE2b-256 f0abeb9d24ea152a07250c43cff3f65fb593afa45f0c4e57aa83ccce728f8eec

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp311-cp311-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp311-cp311-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 892def83ec1a4f067fb0a169407ef1421d2f3c1ab8215fa9ab39c50ffb9eb1c6
MD5 a9599198c57c9e1d3185305ba3a39a01
BLAKE2b-256 abb31c9f64e245e382c7d67ed5aa0db887c89d81c64ae80c30733d50997bcdf3

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 353e6f649a2320bbd87af718abe42bbe2f5d5e05cf0cf6364a18c8873fe5b9a4
MD5 d4dd4a891783ffeb44af32aab60df205
BLAKE2b-256 cb1579e55614c57c7456feaa5c83d2c088d0eece8226883b8f6ce0439aa6b949

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6af04b08143e59a3ca36da5372f51e7cb3f82b24bcd31a9ecc517d31cacb2f61
MD5 9561c21c246fed1b19369f8825514806
BLAKE2b-256 ea4e7253c0fb999617f8ad4ed8809384383198f746498646c0b4b5704630ca1b

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: mwdust-1.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 71.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 272577cd16d0c23b62ff12a63efa99839eb6a6c47c873b344390f23ddae7b1ed
MD5 9e7481a2b67ac573695681a2daad2889
BLAKE2b-256 f30f19590342f7e4d8bc5282bfe46b10c9d4e0b3ec17d2ee88b666cb0c138bfa

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp310-cp310-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp310-cp310-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 99176cf07eba959d95a8e94353c9bf10f8ce0cb55e09edd49e79217bffe5f83b
MD5 5067f22759f5bc0f4d0dcead10a47f54
BLAKE2b-256 6900353c61cdb9da10e680f610223988d396388007db9ccb86b1db2ea815b427

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9c036c4dbadee00d9792bd0929ade7f9c70141dce886ab6b1d25dd76a12dce13
MD5 d1d1cd0fa932437f4c0772744968fe16
BLAKE2b-256 62a1d9cb899b830b7716b8006fae123d6cc9451737d4d6d9c767b78af2d80673

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 10b25664e2aaf0a857af8a3f8eb0bd3f6d9b1a23abd5d9810717f8700ccbfae4
MD5 a7f34b907ec3358ad06c22af9c29ce10
BLAKE2b-256 e9cf220c2d8d306b170c9157af854156f92deeb0edefdeac35bf6a93e36d92ba

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mwdust-1.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 71.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c8855dfc2050106140f07952722d496af0a1aaa88baf6b75c99646b7d0614361
MD5 aaa8dfc40a21661a435aa136b0d94305
BLAKE2b-256 5690edaba09d95d2a8854edbb4f0a67e13e40a7f66a3d752106797d3fdba5dbf

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp39-cp39-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp39-cp39-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1a118ea1f6855bc07d601b5d7595198f4191f78a93a3732d35f56781b6c87188
MD5 31ec637dbd5cb0ace09fdea1445a2ecf
BLAKE2b-256 b6360befa73e92fa19fb785c9e1392061e72332236e0c07c87c82faa2c79db01

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: mwdust-1.7-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 81.3 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fa655ca08ba2b3a35a106efcfe00f63fa0b280f18958a1572637e973cbd75580
MD5 c91fdbbab00a04143023e588957e87b6
BLAKE2b-256 3296108fd27169efe9137279fff3a396ce980cb8c442c5d9d54d4fb7dfa02a68

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: mwdust-1.7-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 85.4 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 65124c0027f32d17f512614153989a8c0ccc96c1d47ddb10c0ae445baa469abb
MD5 bb3f8cbd085c837f9d1eb479a0a54edd
BLAKE2b-256 088b16b594baa5d20e9f81f65c81a9f6aa83caf31f6f72a5c4920a79dabfdbfe

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: mwdust-1.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 70.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b75b797546453fbde744ea49aa0ea4d1396b9d58a960c86c50d05dbe34f41bf1
MD5 3c0e787da906d905c465330d72f630e7
BLAKE2b-256 aafa16dca877e7cf8d426315e301c2dd5954dea293e20888704123795e2520d0

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp38-cp38-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mwdust-1.7-cp38-cp38-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d06fb12f8c60250e9dcff27a24b27036f66f818e53951e7431c485a924ec852e
MD5 53c7f9b7d62560398d42496258b933bf
BLAKE2b-256 798767fa278ee478a824b4b2444826b833cbb98e8fc82b96398409f917dde6c9

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: mwdust-1.7-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 81.1 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ac4a684c7bbbf6c1bedd24388279eef80fd3654c1d1d9ea8a9b0f40fd2e809b7
MD5 f3dd44360fa83b35dd87fab7e715209d
BLAKE2b-256 8280654af99f6bcd76707769d5899010c09090159747214ce46bb2affa7339b8

See more details on using hashes here.

File details

Details for the file mwdust-1.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: mwdust-1.7-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 85.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for mwdust-1.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6925576f863a8f9c782a3ec8ea6969dbd9e2f2657e311c3bf491a1292aa42806
MD5 14aaee81055e8aabc39a4d14e9be2182
BLAKE2b-256 895aea68a8374d64c0ecbb2562b8413742f0e5b03d6f35c158ae9e313af14e7c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page