Skip to main content
Help us improve PyPI by participating in user testing. All experience levels needed!

Dust in the Milky Way

Project description

Dust in 3D in the Milky Way


Please define an environment variable DUST_DIR before installing the code; this is a directory that will contain the dust data.

Standard python build/install


sudo python install


python install --prefix=/some/directory/

The installation automatically downloads the relevant dust data. You might have to define an environment variable SUDO_USER if not installing with sudo.

Dust Data

The code can automatically download all of the necessary data (use the installation option --no-downloads to turn this off). These data are put in subdirectories of a directory DUST_DIR, with roughly the following lay-out:


The data for the Drimmel et al. (2003) map is installed in the code directory, because it is not very large.


All of the maps can be initialized similar to:

import mwdust
drimmel= mwdust.Drimmel03(filter='2MASS H')
sfd= mwdust.SFD(filter='2MASS H')

which sets up a Drimmel et al. (2003) map for the H-band filter. The maps can be evaluate for a given Galactic longitude l, Galactic latitude b, and an array (or scalar) of distances D:

drimmel(60.,0.,3.) # inputs are (l,b,D)
array([ 0.42794197])
array([ 0.24911393,  0.53050198,  0.78045575,  1.14657304])
# SFD is just the constant SFD extinction
array([ 1.19977335,  1.19977335,  1.19977335])

and they can be plotted as:

drimmel.plot(55.,0.5) # inputs are (l,b)

(plot not shown).

Supported bandpasses

Currently only a few filters are supported; if no filter is supplied, E(B-V) is returned on the SFD scale if the object is initialized with sf10=True (which tells the code to use re-scalings from Schlafly & Finkbeiner 2011). sf10=True is the default initialization for every map, so be careful in interpreting the raw E(B-V) that come out of the code. Only use sf10=False when you have an extinction map in true E(B-V), not SFD E(B-V). No map currently included in this package is in this situation, so using sf10=False is never recommended.

To check what bandpasses are supported on the sf10=True scale do (these are all the bandpasses from Table 6 in Schlafly & Finkbeiner 2011):

from mwdust.util import extCurves

which gives:

['Stromgren u',
 'Stromgren v',
 'ACS clear',
 'CTIO R',
 'CTIO V',
 'CTIO U',
 'CTIO I',

To check the bandpasses that are supported on the old SFD scale (sf10=False), do:


which gives:

array(['CTIO R', 'CTIO V', 'CTIO U', 'CTIO I', 'CTIO B', 'DSS-II i',
 'DSS-II g', 'WISE-1', 'WISE-2', 'DSS-II r', 'UKIRT H', 'UKIRT J',
 'UKIRT K', 'IRAC-1', 'IRAC-2', 'IRAC-3', 'IRAC-4', '2MASS H',
 'SDSS r', 'SDSS u', 'SDSS z', 'SDSS g', 'SDSS i', '2MASS Ks',
 '2MASS J'],


When making use of this code in a publication, please cite Bovy et al. (2015a). Also cite the relevant papers for the dust map that you use:

Project details

Release history Release notifications

This version
History Node


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
mwdust-1.0.tar.gz (27.2 MB) Copy SHA256 hash SHA256 Source None Dec 29, 2015

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page