Skip to main content

Model Server for Apache MXNet is a tool for serving neural net models for inference

Project description

Apache MXNet Model Server (MMS) is a flexible and easy to use tool for serving deep learning models exported from MXNet or the Open Neural Network Exchange (ONNX).

Use the MMS Server CLI, or the pre-configured Docker images, to start a service that sets up HTTP endpoints to handle model inference requests.

Detailed documentation and examples are provided in the docs folder.

Prerequisites

If you wish to use ONNX with MMS, you will need to first install a protobuf compiler. This is not needed if you wish to serve MXNet models.

Instructions for installing MMS with ONNX.

Installation

pip install mxnet-model-server

Development

We welcome new contributors of all experience levels. For information on how to install MMS for development, refer to the MMS docs.

Source code

You can check the latest source code as follows:

git clone https://github.com/awslabs/mxnet-model-server.git

Testing

After installation, try out the MMS Quickstart for Serving a Model and Exporting a Model.

Help and Support

Citation

If you use MMS in a publication or project, please cite MMS: https://github.com/awslabs/mxnet-model-server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

mxnet_model_server-1.0b20181015-py2.py3-none-any.whl (4.5 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file mxnet_model_server-1.0b20181015-py2.py3-none-any.whl.

File metadata

  • Download URL: mxnet_model_server-1.0b20181015-py2.py3-none-any.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/2.7.12

File hashes

Hashes for mxnet_model_server-1.0b20181015-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 06cede0a793ca34d1f9a8dc1c92315d16ed25c6624c478891ce98c8c7bc5a6c9
MD5 98a7450eea0a926a0b0f4e62d6663501
BLAKE2b-256 a80752bcb043fb6e28b4cecceb06f37a4a2c1128ee63489d451d0775a47841cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page