Octave convolution
Project description
MXNet Octave Conv
Unofficial implementation of Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution.
Install
pip install mxnet-octave-conv
Usage
import mxnet as mx
from mxnet_octave_conv import octave_conv, octave_dual
mx.symbol.Variable(name='data')
conv = octave_conv(x, num_filter=7, kernel=(3, 3))
pool = octave_dual(conv, lambda data: mx.symbol.Pooling(data, kernel=(2, 2), stride=(2, 2), pool_type='max'))
conv = octave_conv(pool, num_filter=5, kernel=3, stride=1, dilate=(2, 3), name='Mid')
pool = octave_dual(conv, lambda data: mx.symbol.Pooling(data, kernel=(2, 2), stride=(2, 2), pool_type='max'))
conv = octave_conv(pool, num_filter=3, kernel=3, stride=(1, 1), dilate=1, ratio_out=0.0)
pool = octave_dual(conv, lambda data: mx.symbol.Pooling(data, kernel=(2, 2), stride=(2, 2), pool_type='max'))
flatten = mx.symbol.Flatten(pool)
dense = mx.symbol.FullyConnected(flatten, num_hidden=2)
model = mx.symbol.SoftmaxOutput(dense, name='softmax')
print(mx.visualization.print_summary(model, shape={'data': (2, 3, 32, 32)}))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file mxnet-octave-conv-0.1.0.tar.gz
.
File metadata
- Download URL: mxnet-octave-conv-0.1.0.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.7.1 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf971c94e90669f582e37024af16347492893321ad7c2da260bd2d48fd2050b1 |
|
MD5 | 4668570982bf5e278da85ed654f46301 |
|
BLAKE2b-256 | bfb937cbfcc147a7f9419e2734d322dc78edc59b96036aa0abffacb39ffea4ae |