Skip to main content

Octave convolution

Project description

MXNet Octave Conv

Travis Coverage 996.ICU

Unofficial implementation of Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution.

Install

pip install mxnet-octave-conv

Usage

import mxnet as mx
from mxnet_octave_conv import octave_conv, octave_dual

mx.symbol.Variable(name='data')
conv = octave_conv(x, num_filter=7, kernel=(3, 3))
pool = octave_dual(conv, lambda data: mx.symbol.Pooling(data, kernel=(2, 2), stride=(2, 2), pool_type='max'))
conv = octave_conv(pool, num_filter=5, kernel=3, stride=1, dilate=(2, 3), name='Mid')
pool = octave_dual(conv, lambda data: mx.symbol.Pooling(data, kernel=(2, 2), stride=(2, 2), pool_type='max'))
conv = octave_conv(pool, num_filter=3, kernel=3, stride=(1, 1), dilate=1, ratio_out=0.0)
pool = octave_dual(conv, lambda data: mx.symbol.Pooling(data, kernel=(2, 2), stride=(2, 2), pool_type='max'))
flatten = mx.symbol.Flatten(pool)
dense = mx.symbol.FullyConnected(flatten, num_hidden=2)
model = mx.symbol.SoftmaxOutput(dense, name='softmax')
print(mx.visualization.print_summary(model, shape={'data': (2, 3, 32, 32)}))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mxnet-octave-conv-0.1.0.tar.gz (5.0 kB view details)

Uploaded Source

File details

Details for the file mxnet-octave-conv-0.1.0.tar.gz.

File metadata

  • Download URL: mxnet-octave-conv-0.1.0.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.7.1 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for mxnet-octave-conv-0.1.0.tar.gz
Algorithm Hash digest
SHA256 cf971c94e90669f582e37024af16347492893321ad7c2da260bd2d48fd2050b1
MD5 4668570982bf5e278da85ed654f46301
BLAKE2b-256 bfb937cbfcc147a7f9419e2734d322dc78edc59b96036aa0abffacb39ffea4ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page