Skip to main content

Mycorrhiza population assignment tools.

Project description

Mycorrhiza

Combining phylogenetic networks and Random Forests for prediction of ancestry from multilocus genotype data.

Installing Mycorrhiza on Ubuntu 16.04

  1. Make sure you have the latest version of Python 3.x

    python3 --version
    
  2. Install pip3, Java and the tkinter library

    sudo apt-get install python3-pip python3-tk default-jre
    
  3. Install Mycorrhiza

    pip3 install --upgrade mycorrhiza
    
  4. Install SplitsTree

    wget http://ab.inf.uni-tuebingen.de/data/software/splitstree4/download/splitstree4_unix_4_14_6.sh
    chmod +x splitstree4_unix_4_14_6.sh
    ./splitstree4_unix_4_14_6.sh
    

    Follow the instructions in the GUI installer, leaving all settings to default.

Installing Mycorrhiza on Mac OS X Sierra 10.12

  1. If you don't already have the package manager HomeBrew, install it before proceeding.

    ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
    
  2. Install Python 3.x

    brew install python
    
  3. Install Mycorrhiza

    sudo -H pip3 install --upgrade mycorrhiza
    
  4. Install SplitsTree

    The package can be found here. Follow the installer instructions, leaving all settings to default.

Running an analysis from command line

  1. Run an analysis.

    crossvalidate -i gipsy.myc -o out/
    

    To see all available parameters:

    crossvalidate -h
    

Running an analysis in a script

  1. Import the necessary modules.

    from mycorrhiza.dataset import Myco
    from mycorrhiza.analysis import CrossValidate
    from mycorrhiza.plotting.plotting import mixture_plot
    
  2. (Optional) By default Mycorrhiza will look for SplitStree in your home folder. I you wish to specify a different path for the SplitsTree executable you can do so in the settings module.

    from mycorrhiza.settings import const
    const['__SPLITSTREE_PATH__'] = '~/splitstree4/SplitsTree'
    
  3. Load some data. Here data is loaded in the Mycorrhiza format from the Gipsy moth sample data file. Example data can be found here.

    myco = Myco(file_path='data/gipsy.myc')
    myco.load()
    
  4. Run an analysis. Here a simple 5-fold cross-validation analysis is executed on all available loci, without partitioning.

    cv = CrossValidate(dataset=myco, out_path='data/')
    cv.run(n_partitions=1, n_loci=0, n_splits=5, n_estimators=60, n_cores=1)
    
  5. Plot the results.

    mixture_plot(cv)
    

Documentation

https://jgeofil.github.io/mycorrhiza/

File formats

Myco

Diploid genotypes occupy 2 rows (the sample identifier must be identical).

Column(s) Content Type
1 Sample identifier string
2 Population string or integer
3 Learning flag {0,1}
4 to M+3 Loci {A, T, G, C, N}

STRUCTURE

Diploid genotypes occupy 2 rows (the sample identifier must be identical).

Column(s) Content Type
1 Sample identifier string
2 Population integer
3 Learning flag {0,1}
4 to O+3 Optional (Ignored)
O+3 to M+O+3 Loci integer or -9

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mycorrhiza-0.0.24.tar.gz (11.0 kB view hashes)

Uploaded Source

Built Distributions

mycorrhiza-0.0.24-py3.6.egg (37.7 kB view hashes)

Uploaded Source

mycorrhiza-0.0.24-py3-none-any.whl (20.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page