Skip to main content

Type annotations for boto3.Personalize 1.35.9 service generated with mypy-boto3-builder 7.26.1

Project description

mypy-boto3-personalize

PyPI - mypy-boto3-personalize PyPI - Python Version Docs PyPI - Downloads

boto3.typed

Type annotations for boto3.Personalize 1.35.9 service compatible with VSCode, PyCharm, Emacs, Sublime Text, mypy, pyright and other tools.

Generated by mypy-boto3-builder 7.26.1.

More information can be found on boto3-stubs page and in mypy-boto3-personalize docs.

See how it helps to find and fix potential bugs:

boto3-stubs demo

How to install

VSCode extension

Add AWS Boto3 extension to your VSCode and run AWS boto3: Quick Start command.

Click Modify and select boto3 common and Personalize.

From PyPI with pip

Install boto3-stubs for Personalize service.

# install with boto3 type annotations
python -m pip install 'boto3-stubs[personalize]'


# Lite version does not provide session.client/resource overloads
# it is more RAM-friendly, but requires explicit type annotations
python -m pip install 'boto3-stubs-lite[personalize]'


# standalone installation
python -m pip install mypy-boto3-personalize

How to uninstall

python -m pip uninstall -y mypy-boto3-personalize

Usage

VSCode

python -m pip install 'boto3-stubs[personalize]'

Both type checking and code completion should now work. No explicit type annotations required, write your boto3 code as usual.

PyCharm

Install boto3-stubs-lite[personalize] in your environment:

python -m pip install 'boto3-stubs-lite[personalize]'`

Both type checking and code completion should now work. Explicit type annotations are required.

Use boto3-stubs package instead for implicit type discovery.

Emacs

  • Install boto3-stubs with services you use in your environment:
python -m pip install 'boto3-stubs[personalize]'
(use-package lsp-pyright
  :ensure t
  :hook (python-mode . (lambda ()
                          (require 'lsp-pyright)
                          (lsp)))  ; or lsp-deferred
  :init (when (executable-find "python3")
          (setq lsp-pyright-python-executable-cmd "python3"))
  )
  • Make sure emacs uses the environment where you have installed boto3-stubs

Type checking should now work. No explicit type annotations required, write your boto3 code as usual.

Sublime Text

  • Install boto3-stubs[personalize] with services you use in your environment:
python -m pip install 'boto3-stubs[personalize]'

Type checking should now work. No explicit type annotations required, write your boto3 code as usual.

Other IDEs

Not tested, but as long as your IDE supports mypy or pyright, everything should work.

mypy

  • Install mypy: python -m pip install mypy
  • Install boto3-stubs[personalize] in your environment:
python -m pip install 'boto3-stubs[personalize]'`

Type checking should now work. No explicit type annotations required, write your boto3 code as usual.

pyright

  • Install pyright: npm i -g pyright
  • Install boto3-stubs[personalize] in your environment:
python -m pip install 'boto3-stubs[personalize]'

Optionally, you can install boto3-stubs to typings folder.

Type checking should now work. No explicit type annotations required, write your boto3 code as usual.

Explicit type annotations

Client annotations

PersonalizeClient provides annotations for boto3.client("personalize").

from boto3.session import Session

from mypy_boto3_personalize import PersonalizeClient

client: PersonalizeClient = Session().client("personalize")

# now client usage is checked by mypy and IDE should provide code completion

Paginators annotations

mypy_boto3_personalize.paginator module contains type annotations for all paginators.

from boto3.session import Session

from mypy_boto3_personalize import PersonalizeClient
from mypy_boto3_personalize.paginator import (
    ListBatchInferenceJobsPaginator,
    ListBatchSegmentJobsPaginator,
    ListCampaignsPaginator,
    ListDatasetExportJobsPaginator,
    ListDatasetGroupsPaginator,
    ListDatasetImportJobsPaginator,
    ListDatasetsPaginator,
    ListEventTrackersPaginator,
    ListFiltersPaginator,
    ListMetricAttributionMetricsPaginator,
    ListMetricAttributionsPaginator,
    ListRecipesPaginator,
    ListRecommendersPaginator,
    ListSchemasPaginator,
    ListSolutionVersionsPaginator,
    ListSolutionsPaginator,
)

client: PersonalizeClient = Session().client("personalize")

# Explicit type annotations are optional here
# Types should be correctly discovered by mypy and IDEs
list_batch_inference_jobs_paginator: ListBatchInferenceJobsPaginator = client.get_paginator(
    "list_batch_inference_jobs"
)
list_batch_segment_jobs_paginator: ListBatchSegmentJobsPaginator = client.get_paginator(
    "list_batch_segment_jobs"
)
list_campaigns_paginator: ListCampaignsPaginator = client.get_paginator("list_campaigns")
list_dataset_export_jobs_paginator: ListDatasetExportJobsPaginator = client.get_paginator(
    "list_dataset_export_jobs"
)
list_dataset_groups_paginator: ListDatasetGroupsPaginator = client.get_paginator(
    "list_dataset_groups"
)
list_dataset_import_jobs_paginator: ListDatasetImportJobsPaginator = client.get_paginator(
    "list_dataset_import_jobs"
)
list_datasets_paginator: ListDatasetsPaginator = client.get_paginator("list_datasets")
list_event_trackers_paginator: ListEventTrackersPaginator = client.get_paginator(
    "list_event_trackers"
)
list_filters_paginator: ListFiltersPaginator = client.get_paginator("list_filters")
list_metric_attribution_metrics_paginator: ListMetricAttributionMetricsPaginator = (
    client.get_paginator("list_metric_attribution_metrics")
)
list_metric_attributions_paginator: ListMetricAttributionsPaginator = client.get_paginator(
    "list_metric_attributions"
)
list_recipes_paginator: ListRecipesPaginator = client.get_paginator("list_recipes")
list_recommenders_paginator: ListRecommendersPaginator = client.get_paginator("list_recommenders")
list_schemas_paginator: ListSchemasPaginator = client.get_paginator("list_schemas")
list_solution_versions_paginator: ListSolutionVersionsPaginator = client.get_paginator(
    "list_solution_versions"
)
list_solutions_paginator: ListSolutionsPaginator = client.get_paginator("list_solutions")

Literals

mypy_boto3_personalize.literals module contains literals extracted from shapes that can be used in user code for type checking.

Full list of Personalize Literals can be found in docs.

from mypy_boto3_personalize.literals import BatchInferenceJobModeType


def check_value(value: BatchInferenceJobModeType) -> bool: ...

Type definitions

mypy_boto3_personalize.type_defs module contains structures and shapes assembled to typed dictionaries and unions for additional type checking.

Full list of Personalize TypeDefs can be found in docs.

from mypy_boto3_personalize.type_defs import AlgorithmImageTypeDef


def get_value() -> AlgorithmImageTypeDef:
    return {...}

How it works

Fully automated mypy-boto3-builder carefully generates type annotations for each service, patiently waiting for boto3 updates. It delivers drop-in type annotations for you and makes sure that:

  • All available boto3 services are covered.
  • Each public class and method of every boto3 service gets valid type annotations extracted from botocore schemas.
  • Type annotations include up-to-date documentation.
  • Link to documentation is provided for every method.
  • Code is processed by black and isort for readability.

What's new

Implemented features

  • Fully type annotated boto3, botocore, aiobotocore and aioboto3 libraries
  • mypy, pyright, VSCode, PyCharm, Sublime Text and Emacs compatibility
  • Client, ServiceResource, Resource, Waiter Paginator type annotations for each service
  • Generated TypeDefs for each service
  • Generated Literals for each service
  • Auto discovery of types for boto3.client and boto3.resource calls
  • Auto discovery of types for session.client and session.resource calls
  • Auto discovery of types for client.get_waiter and client.get_paginator calls
  • Auto discovery of types for ServiceResource and Resource collections
  • Auto discovery of types for aiobotocore.Session.create_client calls

Latest changes

Builder changelog can be found in Releases.

Versioning

mypy-boto3-personalize version is the same as related boto3 version and follows PEP 440 format.

Thank you

Documentation

All services type annotations can be found in boto3 docs

Support and contributing

This package is auto-generated. Please reports any bugs or request new features in mypy-boto3-builder repository.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mypy_boto3_personalize-1.35.9.tar.gz (38.4 kB view details)

Uploaded Source

Built Distribution

mypy_boto3_personalize-1.35.9-py3-none-any.whl (43.2 kB view details)

Uploaded Python 3

File details

Details for the file mypy_boto3_personalize-1.35.9.tar.gz.

File metadata

File hashes

Hashes for mypy_boto3_personalize-1.35.9.tar.gz
Algorithm Hash digest
SHA256 675d08e025bc5ee7421e112bd5c727b9fe3d10576264d0306998be1090e602b6
MD5 d2e12f57bf2c2e36d411f2ea9bd6f8bc
BLAKE2b-256 54889c9fa8d52fd60396e9b22c09dfaeea7bc491b2951ff110c548fc2cd461d8

See more details on using hashes here.

File details

Details for the file mypy_boto3_personalize-1.35.9-py3-none-any.whl.

File metadata

File hashes

Hashes for mypy_boto3_personalize-1.35.9-py3-none-any.whl
Algorithm Hash digest
SHA256 dfa20117241d06c9e52f3e9d7df5e8be3cca443a4d7842d1207affa4d51f01e0
MD5 769411f5995a19bbc059a8879d33d8d6
BLAKE2b-256 79b7a365d73c8f46f7dfd657d36704d2f6d2c56e38fdac4e33cfff961a3df7b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page