Skip to main content

Nested Automated Argument Parsing Configuration (NAAPC).

Project description

Nested Automated Argument Parsing Configuration (NAAPC)

NAAPC contains two classes: NConfig and NDict. NDict provides method to easily manipulate nested dictionaries. NConfig is a subclass of NDict and can automatically modify configurations according to CLI arguments.

Installation

pip install naapc

Or from source code:

pip install .

Typical Usage.

Assume a configuration file test.yaml:

task:
  task: classification
train:
  pretrain: false
  loss_args:
    lr: 0.1

The typical usage is as follows:

from naapc import NConfig
from argparse import parser

parser.add_argument("-c", type=str, dest="config")
args, extra_args = parser.parse_known_args(["-c", "test.yaml", "--task;task", "regression", "--train;loss_args;lr", "0.2", "--train;pretrain", "1", "--others", "other"])

with open(args.config, "r") as f:
  raw = yaml.safe_load(f)
config = NConfig(raw)
extra_args = config.parse_update(parser, extra_args)

The resulting configurations:

task:
  task: regression
train:
  pretrain: true
  loss_args:
    lr: 0.2

The data type is determined by the type in the configuration file. The boolean data is treated as integer number 1 and 0 during parsing.

You may custom the arguments:

task:
  task: regression
train:
  pretrain: true
  loss_args:
    lr: 0.2
_ARGUMENT_SPECIFICATION:
  task;task:
    flag: --task
    choices: ["regression", "classification"]
  train;lr:
    flag: lr

NDict Usages

for a sample configuration test.yaml file:

task:
  task: classification
train:
  loss_args:
    lr: 0.1
from naapc import NDict

with open("test.yaml", "r") as f:
  raw = yaml.safe_load(f)
nd = NDict(raw, delimiter=";")

nd1 = NDict.from_flatten_dict(nd.flatten_dict) # nd1 == nd
"task;path" in nd                      # "task" in raw and "path" in raw["task"]
del nd["task;path"]                    # del raw["task]["path]
nd["task;path"] = "cwd"                # raw["task"]["path"] = Path(".").absolute()
nd.flatten_dict                        # {"task;task": "classification", "train;loss_args;lr": 0.1}
nd.paths                               # ["task", "task;task", "train", "train;loss_args", "train;loss_args;lr"]
nd.get("task;seed", 1)                 # raw["task"].get("seed", 1)
nd.raw_dict                            # raw
nd.size                                # len(nd.flatten_dict)
nd.update({"task;here": "there"})      # raw["task]["here] = "there
nd.items()                             # raw.items()
nd.keys()                              # raw.keys()
nd.values()                            # raw.values()
len(nd)                                # len(raw)
bool(nd)                               # len(nd) > 0
nd1 == nd                              # nd1.flatten_dict == nd.flatten_dict
nd1["task;path"] = "xcwd"
nd1["task;extra"] = "ecwd"
nd["train;epochs"] = 100
nd.compare_dict(nd1)                   # {"task;path": ("cwd", "xcwd"), "task;extra": (None, ecwd), "train;epochs": (100, None)}

NConfig Usage

NConfig only supports int, str, float, bool, and list of these types. The NConfig automatically checks data type when modifications are applied. Note that argument specification ("_ARGUMENT_SPECIFICATION") does not count as part of the configurations but will be saved when use save() method. The path specified as "_IGNORE_IN_CLI" will not be added to the parser.

config.save("path.yaml")               # Save configurations as a yaml file
config.add_to_argparse(parser)         # Generate cli arguments for every configuration.
config.parse_update(parser, args)      # Parse cli arguments and update corresponding configuration. Extra arguments will be returned.

Typical specifications are as follows:

_ARGUMENT_SPECIFICATION:
  task;task:
    flag: --task
  task;seed:
    flag: --seed
  task;device:
    flag: -d
  data;dataset:
    choices: ["cifar", "imagenet", "asap"]
  log;comet_ml_key:
    _IGNORE_IN_CLI

Other functionalities are the same to NDict.

Typing

Add a type

NestedOrDict = Union[NDict, dict]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

naapc-1.4.0.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

naapc-1.4.0-py3-none-any.whl (7.8 kB view details)

Uploaded Python 3

File details

Details for the file naapc-1.4.0.tar.gz.

File metadata

  • Download URL: naapc-1.4.0.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for naapc-1.4.0.tar.gz
Algorithm Hash digest
SHA256 283119d1ba4ce4193bcb900a661887a752f56b89ccccf8b34fc2b1aa563385c7
MD5 f20fbb4fd8851c4d02c95acf740cf084
BLAKE2b-256 a0e224d1bfe45e788c3027cd4909546e5112b17be699e9a0e7788ebc2e2c61a2

See more details on using hashes here.

File details

Details for the file naapc-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: naapc-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 7.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for naapc-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 00ddf3fe3d39ca76d6cb8e6c9039a055b771b53df59457c630c023e6680df40e
MD5 e132539cd6b8069510faaf12154af06f
BLAKE2b-256 cb2942f7f1ca6373f82725a557fdd40a130b4bc8cab1418cf12b9d13fd0be7cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page