Skip to main content

Nested Automated Argument Parsing Configuration (NAAPC).

Project description

Nested Automated Argument Parsing Configuration (NAAPC)

NAAPC contains two classes: NConfig and NDict. NDict provides method to easily manipulate nested dictionaries. NConfig is a subclass of NDict and can automatically modify configurations according to CLI arguments.

Installation

pip install naapc

Or from source code:

pip install .

Typical Usage.

Assume a configuration file test.yaml:

task:
  task: classification
train:
  pretrain: false
  loss_args:
    lr: 0.1

The typical usage is as follows:

from naapc import nconfig
from argparse import parser

parser.add_argument("-c", type=str, dest="config")
args, extra_args = parser.parse_known_args(["-c", "test.yaml", "--task;task", "regression", "--train;loss_args;lr", "0.2", "--train;pretrain", "1", "--others", "other"])

with open(args.config, "r") as f:
  raw = yaml.safe_load(f)
config = nconfig(raw)
extra_args = config.parse_update(parser, extra_args)

The resulting configurations:

task:
  task: regression
train:
  pretrain: true
  loss_args:
    lr: 0.2

The data type is determined by the type in the configuration file. The boolean data is treated as integer number 1 and 0 during parsing.

You may custom the arguments:

task:
  task: regression
train:
  pretrain: true
  loss_args:
    lr: 0.2
_ARGUMENT_SPECIFICATION:
  task;task:
    flag: --task
    choices: ["regression", "classification"]
  train;lr:
    flag: lr

ndict Usages

for a sample configuration test.yaml file:

task:
  task: classification
train:
  loss_args:
    lr: 0.1

and a sample list configuration test_list.yaml file:

l:
- d:
    task:
      task: classification
- d:
    train:
      loss_args:
        lr: 0.1
from naapc import ndict

with open("test.yaml", "r") as f:
  raw = yaml.safe_load(f)
nd = ndict(raw["d"], delimiter=";")
nd1 = ndict.from_flatten_dict(nd.flatten_dict) # nd1 == nd
nd2 = ndict.from_list_of_dict(raw["l"]) # nd2 == nd1 == nd

"task;path" in nd                      # "task" in raw and "path" in raw["task"]
del nd["task;path"]                    # del raw["task]["path]
nd["task;path"] = "cwd"                # raw["task"]["path"] = Path(".").absolute()
nd.flatten_dict                        # {"task;task": "classification", "train;loss_args;lr": 0.1}
nd.flatten_dict_split                  # raw["l"]
nd.paths                               # ["task", "task;task", "train", "train;loss_args", "train;loss_args;lr"]
nd.get("task;seed", 1)                 # raw["task"].get("seed", 1)
nd.raw_dict                            # raw
nd.size                                # len(nd.flatten_dict)
nd.update({"task;here": "there"})      # raw["task]["here] = "there
nd.items()                             # raw.items()
nd.keys()                              # raw.keys()
nd.values()                            # raw.values()
len(nd)                                # len(raw)
bool(nd)                               # len(nd) > 0
nd1 == nd                              # nd1.flatten_dict == nd.flatten_dict
nd1["task;path"] = "xcwd"
nd1["task;extra"] = "ecwd"
nd["train;epochs"] = 100
nd.compare_dict(nd1)                   # {"task;path": ("cwd", "xcwd"), "task;extra": (None, ecwd), "train;epochs": (100, None)}
nd.is_matched(
        {
            "task;path": "ecwd", 
            "train;epochs": "!QUERY d[path] == d['train;minimum_epochs']"
        }
    )                                  # Test if this dictionary is what you want.

nconfig Usage

nconfig only supports int, str, float, bool, and list of these types. The nconfig automatically checks data type when modifications are applied. Note that argument specification ("_ARGUMENT_SPECIFICATION") does not count as part of the configurations but will be saved when use save() method. The path specified as "_IGNORE_IN_CLI" will not be added to the parser.

config.save("path.yaml")               # Save configurations as a yaml file
config.add_to_argparse(parser)         # Generate cli arguments for every configuration.
config.parse_update(parser, args)      # Parse cli arguments and update corresponding configuration. Extra arguments will be returned.

Typical specifications are as follows:

_ARGUMENT_SPECIFICATION:
  task;task:
    flag: --task
  task;seed:
    flag: --seed
  task;device:
    flag: -d
  data;dataset:
    choices: ["cifar", "imagenet", "asap"]
  log;comet_ml_key:
    _IGNORE_IN_CLI

Other functionalities are the same to NDict.

Typing

Add a type

NestedOrDict = Union[ndict, dict]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

naapc-1.6.0.tar.gz (11.8 kB view details)

Uploaded Source

Built Distribution

naapc-1.6.0-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file naapc-1.6.0.tar.gz.

File metadata

  • Download URL: naapc-1.6.0.tar.gz
  • Upload date:
  • Size: 11.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for naapc-1.6.0.tar.gz
Algorithm Hash digest
SHA256 276af3dd055b46978935f761abdab592c7d2591c91b66a584af593358bd721dc
MD5 b21269c19741beb4726b7b75e7054ea9
BLAKE2b-256 5f7ed4b0acf6e6ff3e5cbcbf69bd92746a0f657d3b62e880e7a2d5f22d793526

See more details on using hashes here.

File details

Details for the file naapc-1.6.0-py3-none-any.whl.

File metadata

  • Download URL: naapc-1.6.0-py3-none-any.whl
  • Upload date:
  • Size: 8.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for naapc-1.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3411ff3fe0eea9b7b0c2883402e0a9e01d1201b5ebeee5739d88e4e94fbc5f4d
MD5 6056c4dbcfe85aeb92fc35e8306fd291
BLAKE2b-256 faa906d72e81ca146d2c4728ba7349ef2c20ce4fccc6418b22cf9910d31f4dfb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page