Skip to main content

Nested Automated Argument Parsing Configuration (NAAPC).

Project description

Nested Automated Argument Parsing Configuration (NAAPC)

NAAPC contains two classes: NConfig and NDict. NDict provides method to easily manipulate nested dictionaries. NConfig is a subclass of NDict and can automatically modify configurations according to CLI arguments.

Installation

pip install naapc

Or from source code:

pip install .

Typical Usage.

Assume a configuration file test.yaml:

task:
  task: classification
train:
  pretrain: false
  loss_args:
    lr: 0.1

The typical usage is as follows:

from naapc import nconfig
from argparse import parser

parser.add_argument("-c", type=str, dest="config")
args, extra_args = parser.parse_known_args(["-c", "test.yaml", "--task;task", "regression", "--train;loss_args;lr", "0.2", "--train;pretrain", "1", "--others", "other"])

with open(args.config, "r") as f:
  raw = yaml.safe_load(f)
config = nconfig(raw)
extra_args = config.parse_update(parser, extra_args)

The resulting configurations:

task:
  task: regression
train:
  pretrain: true
  loss_args:
    lr: 0.2

The data type is determined by the type in the configuration file. The boolean data is treated as integer number 1 and 0 during parsing.

You may custom the arguments:

task:
  task: regression
train:
  pretrain: true
  loss_args:
    lr: 0.2
_ARGUMENT_SPECIFICATION:
  task;task:
    flag: --task
    choices: ["regression", "classification"]
  train;lr:
    flag: lr

ndict Usages

for a sample configuration test.yaml file:

task:
  task: classification
train:
  loss_args:
    lr: 0.1

and a sample list configuration test_list.yaml file:

l:
- d:
    task:
      task: classification
- d:
    train:
      loss_args:
        lr: 0.1
from naapc import ndict

with open("test.yaml", "r") as f:
  raw = yaml.safe_load(f)
nd = ndict(raw["d"], delimiter=";")
nd1 = ndict.from_flatten_dict(nd.flatten_dict) # nd1 == nd
nd2 = ndict.from_list_of_dict(raw["l"]) # nd2 == nd1 == nd

"task;path" in nd                      # "task" in raw and "path" in raw["task"]
del nd["task;path"]                    # del raw["task]["path]
nd["task;path"] = "cwd"                # raw["task"]["path"] = Path(".").absolute()
nd.flatten_dict                        # {"task;task": "classification", "train;loss_args;lr": 0.1}
nd.flatten_dict_split                  # raw["l"]
nd.paths                               # ["task", "task;task", "train", "train;loss_args", "train;loss_args;lr"]
nd.get("task;seed", 1)                 # raw["task"].get("seed", 1)
nd.raw_dict                            # raw
nd.size                                # len(nd.flatten_dict)
nd.update({"task;here": "there"})      # raw["task]["here] = "there
nd.items()                             # raw.items()
nd.keys()                              # raw.keys()
nd.values()                            # raw.values()
len(nd)                                # len(raw)
bool(nd)                               # len(nd) > 0
nd1 == nd                              # nd1.flatten_dict == nd.flatten_dict
nd1["task;path"] = "xcwd"
nd1["task;extra"] = "ecwd"
nd["train;epochs"] = 100
nd.compare_dict(nd1)                   # {"task;path": ("cwd", "xcwd"), "task;extra": (None, ecwd), "train;epochs": (100, None)}
nd.is_matched(
        {
            "task;path": "ecwd", 
            "train;epochs": "!QUERY d[path] == d['train;minimum_epochs']"
        }
    )                                  # Test if this dictionary is what you want.

nconfig Usage

nconfig only supports int, str, float, bool, and list of these types. The nconfig automatically checks data type when modifications are applied. Note that argument specification ("_ARGUMENT_SPECIFICATION") does not count as part of the configurations but will be saved when use save() method. The path specified as "_IGNORE_IN_CLI" will not be added to the parser.

config.save("path.yaml")               # Save configurations as a yaml file
config.add_to_argparse(parser)         # Generate cli arguments for every configuration.
config.parse_update(parser, args)      # Parse cli arguments and update corresponding configuration. Extra arguments will be returned.

Typical specifications are as follows:

_ARGUMENT_SPECIFICATION:
  task;task:
    flag: --task
  task;seed:
    flag: --seed
  task;device:
    flag: -d
  data;dataset:
    choices: ["cifar", "imagenet", "asap"]
  log;comet_ml_key:
    _IGNORE_IN_CLI

Other functionalities are the same to NDict.

Typing

Add a type

NestedOrDict = Union[ndict, dict]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

naapc-1.7.0.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

naapc-1.7.0-py3-none-any.whl (8.8 kB view details)

Uploaded Python 3

File details

Details for the file naapc-1.7.0.tar.gz.

File metadata

  • Download URL: naapc-1.7.0.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for naapc-1.7.0.tar.gz
Algorithm Hash digest
SHA256 2048a31b9ba1c226c05d4222d1c82b2dd12175b667c6697b3f83a31816cb26d0
MD5 a42efa84dce766e9dc5c2a13d1cca77a
BLAKE2b-256 41d25eb40fc3d45d1ded017456a3aca18b2e48428cef752337ea72c72e84d942

See more details on using hashes here.

File details

Details for the file naapc-1.7.0-py3-none-any.whl.

File metadata

  • Download URL: naapc-1.7.0-py3-none-any.whl
  • Upload date:
  • Size: 8.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for naapc-1.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 af9d46de9a51f7a42d6993a98d91a9fa4c6989515e54a355e94611de06e74d6e
MD5 1713be13b87b0145bfe4ef49d0287f9e
BLAKE2b-256 c9ed8b1f98c30739a869956c44f799d807df20e27f3aff8cc1116ef92074436c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page