Skip to main content

Nested Automated Argument Parsing Configuration (NAAPC).

Project description

Nested Automated Argument Parsing Configuration (NAAPC)

NAAPC contains two classes: NConfig and NDict. NDict provides method to easily manipulate nested dictionaries. NConfig is a subclass of NDict and can automatically modify configurations according to CLI arguments.

Installation

pip install naapc

Or from source code:

pip install .

Typical Usage.

ndict Usages

for a sample configuration test.yaml file:

task:
  task: classification
train:
  loss_args:
    lr: 0.1

and a sample list configuration test_list.yaml file:

l:
- d:
    task:
      task: classification
- d:
    train:
      loss_args:
        lr: 0.1
from naapc import ndict

with open("test.yaml", "r") as f:
  raw = yaml.safe_load(f)
nd = ndict(raw["d"], delimiter=";")
nd1 = ndict.from_flatten_dict(nd.flatten_dict) # nd1 == nd
nd2 = ndict.from_list_of_dict(raw["l"]) # nd2 == nd1 == nd

"task;path" in nd                      # "task" in raw and "path" in raw["task"]
del nd["task;path"]                    # del raw["task]["path]
nd["task;path"] = "cwd"                # raw["task"]["path"] = Path(".").absolute()
nd.flatten_dict                        # {"task;task": "classification", "train;loss_args;lr": 0.1}
nd.flatten_dict_split                  # raw["l"]
nd.paths                               # ["task", "task;task", "train", "train;loss_args", "train;loss_args;lr"]
nd.get("task;seed", 1)                 # raw["task"].get("seed", 1)
nd.raw_dict                            # raw
nd.size                                # len(nd.flatten_dict)
nd.update({"task;here": "there"})      # raw["task]["here] = "there
nd.items()                             # raw.items()
nd.keys()                              # raw.keys()
nd.values()                            # raw.values()
len(nd)                                # len(raw)
bool(nd)                               # len(nd) > 0
nd1 == nd                              # nd1.flatten_dict == nd.flatten_dict
nd1["task;path"] = "xcwd"
nd1["task;extra"] = "ecwd"
nd["train;epochs"] = 100
nd.diff(nd1)                   # {"task;path": ("cwd", "xcwd"), "task;extra": (None, ecwd), "train;epochs": (100, None)}

Check test/test_ndict.py for detailed usage.

Typing

Add a type

NestedOrDict = Union[ndict, dict]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

naapc-2.0.0.tar.gz (10.9 kB view details)

Uploaded Source

Built Distribution

naapc-2.0.0-py3-none-any.whl (8.8 kB view details)

Uploaded Python 3

File details

Details for the file naapc-2.0.0.tar.gz.

File metadata

  • Download URL: naapc-2.0.0.tar.gz
  • Upload date:
  • Size: 10.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for naapc-2.0.0.tar.gz
Algorithm Hash digest
SHA256 2a7c61b3b74f913b709e253b3232e2010c59f4d70d714df43bfac0d5ba6e80af
MD5 c312469427a47d4f4143f04eeefd61a0
BLAKE2b-256 5662cd1c2f007561b981931bf7ce8486cf64d7de1dc221fbe2a007017b95777c

See more details on using hashes here.

File details

Details for the file naapc-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: naapc-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 8.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for naapc-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a93f35d882cf024b2a86023ac359f80f702e5bd32dcb3a64c1bcf973d327fb13
MD5 a3a91036a58f4a229ba54bdc01848528
BLAKE2b-256 ffd83c39e9a25565a92addd07aebb2ed9dfd9400450fc35402ce92f9e3093658

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page