Skip to main content

PyO3 bindings and Python interface to nafcodec, an encoder/decoder for Nucleotide Archive Format (NAF) files.

Project description

📦🧬 nafcodec Stars

Rust coder/decoder for Nucleotide Archive Format (NAF) files.

Actions Coverage License Docs Crate PyPI Wheel Bioconda Python Versions Python Implementations Source Mirror GitHub issues Changelog Downloads

🗺️ Overview

Nucleotide Archive Format is a file format proposed in Kryukov et al.[1] in 2019 for storing compressed nucleotide or protein sequences combining 4-bit encoding and Zstandard compression. NAF files can be compressed and decompressed using the original C implementation.

This library provides PyO3 bindings to the nafcodec crate, a Rust implementation of a NAF decoder using nom for parsing the binary format, and zstd for handling Zstandard decompression. It provides a complete API that allows iterating over the contents of a NAF file.

This is the Python version, there is a Rust crate available as well.

📋 Features

  • streaming decoder: The decoder is implemented using different readers each accessing a region of the compressed file, allowing to stream records without having to decode full blocks.
  • file-like decoding: Allow the decoder to read from a file-like object instead of expecting a path.

The following features are planned:

  • optional decoding: Allow the decoder to skip the decoding of certains fields, such as ignoring quality strings when they are not needed.
  • encoder: Implement an encoder as well, using either in-memory buffers or temporary files to grow the archive.

🔌 Usage

Use a nafcodec.Decoder to iterate over the contents of a Nucleotide Archive Format, reading from the given path-like or file-like object:

import nafcodec

decoder = nafcodec.Decoder("../data/LuxC.naf")
for record in decoder:
    print(record.id)

All fields of the obtained Record are optional, and actually depend on the kind of data that was compressed.

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

📋 Changelog

This project adheres to Semantic Versioning and provides a changelog in the Keep a Changelog format.

⚖️ License

This library is provided under the open-source MIT license. The NAF specification is in the public domain.

This project is in no way not affiliated, sponsored, or otherwise endorsed by the original NAF authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

📚 References

  • [1] Kirill Kryukov, Mahoko Takahashi Ueda, So Nakagawa, Tadashi Imanishi. "Nucleotide Archival Format (NAF) enables efficient lossless reference-free compression of DNA sequences". Bioinformatics, Volume 35, Issue 19, October 2019, Pages 3826–3828. doi:10.1093/bioinformatics/btz144

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nafcodec-0.2.0.tar.gz (79.0 kB view details)

Uploaded Source

Built Distributions

nafcodec-0.2.0-pp310-pypy310_pp73-win_amd64.whl (449.6 kB view details)

Uploaded PyPy Windows x86-64

nafcodec-0.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (772.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nafcodec-0.2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (749.1 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nafcodec-0.2.0-pp39-pypy39_pp73-win_amd64.whl (450.3 kB view details)

Uploaded PyPy Windows x86-64

nafcodec-0.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (774.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nafcodec-0.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (750.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nafcodec-0.2.0-pp38-pypy38_pp73-win_amd64.whl (449.3 kB view details)

Uploaded PyPy Windows x86-64

nafcodec-0.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nafcodec-0.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (750.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nafcodec-0.2.0-pp37-pypy37_pp73-win_amd64.whl (451.4 kB view details)

Uploaded PyPy Windows x86-64

nafcodec-0.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (777.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nafcodec-0.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (752.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nafcodec-0.2.0-cp312-cp312-win_amd64.whl (449.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

nafcodec-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (774.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nafcodec-0.2.0-cp312-cp312-macosx_10_9_x86_64.whl (749.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

nafcodec-0.2.0-cp311-cp311-win_amd64.whl (449.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

nafcodec-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (772.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nafcodec-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl (749.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nafcodec-0.2.0-cp310-cp310-win_amd64.whl (449.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

nafcodec-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (772.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nafcodec-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl (749.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nafcodec-0.2.0-cp39-cp39-win_amd64.whl (450.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

nafcodec-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nafcodec-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (749.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nafcodec-0.2.0-cp38-cp38-win_amd64.whl (449.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

nafcodec-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nafcodec-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl (749.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nafcodec-0.2.0-cp37-cp37m-win_amd64.whl (449.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

nafcodec-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nafcodec-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (750.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file nafcodec-0.2.0.tar.gz.

File metadata

  • Download URL: nafcodec-0.2.0.tar.gz
  • Upload date:
  • Size: 79.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for nafcodec-0.2.0.tar.gz
Algorithm Hash digest
SHA256 8194203409f9e0b7aa762530747da4db4dc4c19de0b8fb0419b894e89368e6b8
MD5 7d59f5967c1b287d90927e7699f2eec5
BLAKE2b-256 51b4ffa1ed40c6a69d4393438e15e1e4eb69875339c587800a996190474f9536

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f4b449608aca37481c13e95e36f0011942d8a61e4f6aad0a16b8911d15eed116
MD5 88e0b58a025962f7b207180b366e6949
BLAKE2b-256 88c280d4cf8150976698a887ff056cccd300d63ec9be48dd73bcf361ae5f922b

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db01d193a3c4adb2b140daffbac720b5e845a4aa9c5228b5d6ea2a8713654b6c
MD5 9b26e2763530cebce0a1b3c443665f96
BLAKE2b-256 92d4b86c7caffb48461b9420b14198632841b6476009a641f5ac9c8692a7743d

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 abe89929c68b6cd1a01ba8ba894ee47c1ddd23af05007116cdcb808e7c9f0b17
MD5 8beb8112812d2847941891e4db1cd2ad
BLAKE2b-256 b04d0f1dafdbb93c689783db076ffb8df38f6962e755ebde1654643f0f601dc4

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7de217f74c855ad3e4286b4cf1c0536bc6994536780be750109726cca69a5cd3
MD5 a369eeca3987a73caa105ca7c8246bad
BLAKE2b-256 dcd51184fc7ce3be8b8f8c74439464bbcf2ab82f64242d4d081412d2f5974542

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83562acc60e667e3eeead3b5daf0a08b9841fd3aff4faa548b6938fde6144d17
MD5 e281a001f6f0dc5922ae3ea638f98671
BLAKE2b-256 c07ff8aca30bec03e7c24083b1ebb4f2dcdffdda810fdcd4adec9c62f5c26554

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c69cc51b5af6d999ec31d8985f9aa7df50bd89a99e9a31e721787c18341f2f74
MD5 403fb8ab27c424ae55e8f4097a19d3f3
BLAKE2b-256 42a4168a5861f9b49e72a1c36c212f752c136a93af84206ea1dc3194e3797fc0

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c5866ad8c7fb263e0bce0620e9367442a6cc308af6c992293a2d8a9c1dd249a3
MD5 2e2c5e3bcba583a11575ccddde01b1a9
BLAKE2b-256 0a1149be10cab18df6c1183304483506f56bb6c0bc0a363ac736c387e3ccb1d0

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e40a5394a2f73dd43c9526c0c7d2b96a3aae554409df00e76e4b5563df71b209
MD5 063605a733122d9abb58fd509848bc73
BLAKE2b-256 5e37add9fe7700125b8251e1bca12987ec621f2cb52b10e95a470e4a608645fc

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d1494da90115c4c343c53bfa5ad27661b6d6142cfbaa86664a127b9a34fdbcc
MD5 a5b6d3dd6edffdc6d9fd6dfdd5ccc665
BLAKE2b-256 1eb5231e0b2da5634b9b2275b54d52fc306541074a721a92df4562257e37b7fa

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8c1d2d53cbb83b80468a50181fe60554fbca008880c150405b7512897d1afad5
MD5 645d622112233687a2eed882586c0c9a
BLAKE2b-256 5a16f2d13ed3dea34bf6c7c746c06d1c51b470f15fbc7ddf28676309e267af44

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eca4f61ba0ac425154b4dfebd6a976a17657341014db40de4076365b8d2bd1df
MD5 474f95b6aae3ef9c6d2cc03e578faa49
BLAKE2b-256 d308a3687171a5f444baf07d8809b520d2e9d7f78fa8f3a27136f6bb479d06ff

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5200ba7e28cf5a1eb77efad789a0621da4fe35c67091e2593d9ecae6d15a3b45
MD5 ddf3f284ef3dde08a79429c24d5f9eb0
BLAKE2b-256 e5634d2a651ad10aef85650c4fe9d7c2e1d186d4f5395cd5caf3cccf4e0d1513

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: nafcodec-0.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 449.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for nafcodec-0.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f51bd3b7649c1539f276f6017d4a09f21625fa245c4693fe0025195c90e5011b
MD5 8cf76ea65c6993879d2e0ff210a74501
BLAKE2b-256 6194c64f09fbb544fbba5ce226c7e578bbd6a9fcdd4a7b920969984a042adbba

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e2083abbe3321c4cd9da7f377f7673fc507665d62dcdc94aa01f0a467ac2b11
MD5 db0c2ed13b2bd6577cccc9aa66379af4
BLAKE2b-256 1c10acfa65856dc2234f39a4bd62d02ec94b9acb2a201f36003f2caeccc40e6d

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e9dcf994a215a9506ad95ac89522eec05fbee78e6846edcf4f38c75f5730f7b
MD5 2ff69b31104ae17d1b9c0544f7fcff7f
BLAKE2b-256 6dcc4c3ba1a4bf60f42b09d730aa93c6cbbc9bf81c394cd29b45c6bacb29661b

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nafcodec-0.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 449.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for nafcodec-0.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cfed2aade808a30bab1c230a2f31ebf06cbb22ca1eb8890c3efce5cee7aa1a0e
MD5 4d4830d724905dbc3765118d9f5f0af2
BLAKE2b-256 366f5eec8f27238d5d0deda7815f7be1e02f6777d33808bd69f11076c7123d5b

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 345c3b03c28efef24e9734129d48d08607d7c36e649040feeec521a5cdf16fa5
MD5 98cd7b79b1ea7730397710b1783fc9f0
BLAKE2b-256 05181af940233f6bf2e808bf02ad30cb00a37fa42192e55fcba264505b6a3704

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ffa1bc1f4a338e280f60763099266df2445ea36bc755369eb4a85c576627a56
MD5 711bdfc51c73316b6cca75408c747aa5
BLAKE2b-256 38162fefcebfc7ba735a03d0751d19cecf2fd690bc974c37ac770e839ada8df8

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nafcodec-0.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 449.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for nafcodec-0.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7a3bd3bb2bb1f3c17c638296eb0e00ebef87de4a44252edf6890f4aa41a835f5
MD5 15be4ca98b893acdeb5ec10d608181d2
BLAKE2b-256 879ec97f52aba512cb48422b22bfbff97482758b0617c5f610c306324d82509d

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4ed413b92e1701da126fcb5aa92237f6549be7b1add28b46f8382424607fe2d
MD5 c0c68611560f8db19167fd145869ed19
BLAKE2b-256 3b15b14b9e7dd0e1a307c49a7aaadad228bd759a9d120e020611d0bee879f736

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e418aa68212125cab909b20fe33de183f0ed3bd40b9905c49118b3a91350a63
MD5 a516eae192c4bd7fdfb537f479cd2212
BLAKE2b-256 2be6116b0be80241fa88b7a6447087654441800273295112630fb9d90290f274

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nafcodec-0.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 450.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for nafcodec-0.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 101810e7b23eeb3c7aad230d37f629d529bed1cf33484871eebbab05d8cf430d
MD5 efc5dfe7457ca60ef7236487bfe99bb8
BLAKE2b-256 2d344df469a07246b0c1b3cca7698595572174d97f413d9bdaa0b8352bb463ea

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9eabb609740d77a0c58a7a10dba31f2ec4981414ee5a4a889dc8848bb00a37de
MD5 6800c2c3f3bccbdb908e67ae0bf174b6
BLAKE2b-256 2ddd5fabe9166d7b1185b85b713d3a6eb28a39391432e259624db985d825b31f

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 230ac679b7e9bf1e6c313a1e5a342dd8d56aba1718cc92e9641857824e927d6b
MD5 3fa0c3798be2d1494ab94dad16113a06
BLAKE2b-256 95cdf8c7df231f2fa15323f63910989ed57a0da761116d74488d6040ce42c934

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nafcodec-0.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 449.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for nafcodec-0.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9367c1441dc5a3409f50b28796ffd897f7b08a422d374b9f789bbfd1df87a290
MD5 3fae89a5465bf0adc209758eba8595e7
BLAKE2b-256 1bb6e65b14a03154f39e2d0686f66b5785645ecd492c560ed3de75bf69044179

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b44a53d94abd4c7c63ad1af62829d861f29333ca6d3f2091add7a3b444e547be
MD5 37a66504b62004bd690fee3860813586
BLAKE2b-256 62f0615c4024bcdfa70cc5aa8dbf3e5a3fa5d0299f2c48993c1c1678ad4c8e70

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5caf26df15d2c3e0e75c7bc65454f4325148a6a739d53549dcc7f62d8872226b
MD5 13594fd352da87f210371f32148a58c7
BLAKE2b-256 5c91b987c8741d7831723b9c6c619dba3c379ff710e93dae3b481af82c53d762

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nafcodec-0.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 449.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for nafcodec-0.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4cc6e5f1acec0f27447878a802f8e1f45cc4b87b92f747eaf9e4dfa410cf314f
MD5 6081b5009838dd4c6278a227a2e39faf
BLAKE2b-256 8c29c62afef77c1d80607030924af608812a7ead03ef4e66cfc8c320985fad57

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f77508ac7aff68672a3115dcfa3fae17b166c352f6d7d0fb6bb72d61396f0ee9
MD5 ff25eecc1e80ca9557b779b4aea7a466
BLAKE2b-256 37045772e679d82dc20e283bd24d228d00636f5cb690032d2b167744daccb622

See more details on using hashes here.

File details

Details for the file nafcodec-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nafcodec-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 02f33e17dd570ea1436bf30f642eae8d4e2e2188a84441dbb61e115600ea93dc
MD5 3193b9add9f53ec4ae8778271540fd25
BLAKE2b-256 1751d13691d2dbeaaacc56f041e5fa0af799d2cf00a0308f03b49c50752076c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page