Skip to main content

NAFF algorithm for frequency analysis

Project description

nafflib

P. Belanger, K. Paraschou, G. Sterbini, G. Iadarola et al.

A Python implementation of the Numerical Analysis of Fundamental Frequencies algorithm (NAFF [1-2]) from J. Laskar. This implementation uses a tailor-made optimizer (nafflib.optimise.newton_method, from A. Bazzani, R. Bartolini & F. Schmidt) to find the frequencies up to machine precision for tracking data. A Hann window is used to help with the convergence (nafflib.windowing.hann).

An in-depth description of the NAFF algorithm is provided in P. Belanger's Ph.D. thesis. Additionnal references are given below.

[1] J. Laskar, Introduction to Frequency Map Analysis. http://link.springer.com/10.1007/978-94-011-4673-9_13
[2] J. Laskar et al., The Measure of Chaos by the Numerical Analysis of the Fundamental Frequencies. Application to the Standard Mapping. https://doi.org/10.1016/0167-2789(92)90028-L
[3] A. Wolski,Beam Dynamics in High Energy Particle Accelerators, Section 11.5: A Numerical Method: Frequency Map Analysis. https://www.worldscientific.com/doi/abs/10.1142/9781783262786_0011

Installation

pip install nafflib

Usage

Examples can be found in the examples folder. The harmonics of the data are computed using position-momentum data and the order of the window can be specified by the user. Altough the algorithm works with position-only data, the use of position-momentum is preferred if possible.

Tune

The tune of a signal can be obtained from real or complexe signals as suchs:

# Let's assume the following signal
z = x - 1j * px

# The two following calls are equivalent
# --------------------------------------------------
Q = nafflib.tune(z, window_order=2, window_type="hann")
Q = nafflib.tune(x, px, window_order=2, window_type="hann")
# --------------------------------------------------

# Using the position only:
# --------------------------------------------------
Q = nafflib.tune(x, window_order=2, window_type="hann")
# --------------------------------------------------

Harmonics

Phase space trajectories (x,px),(y,py),(zeta,pzeta) are used to extract the spectral lines of the signal plane-by-plane with the harmonics() function. The number of harmonics is specified with the num_harmonics argument. Again, the function can be used with position only or position-momentum (preferred) information.

# Let's assume the following signal
z = x - 1j * px

# The two following calls are equivalent
# --------------------------------------------------
amplitudes,frequencies = nafflib.harmonics(z, num_harmonics=5, window_order=2, window_type="hann")
amplitudes,frequencies = nafflib.harmonics(x, px, num_harmonics=5, window_order=2, window_type="hann")
# --------------------------------------------------

# From position only:
# --------------------------------------------------
amplitudes,frequencies = nafflib.harmonics(x, num_harmonics=5, window_order=2, window_type="hann")
# --------------------------------------------------

Categorization of harmonics

For KAM trajectories, the harmonics are expected to come as a linear combinations of the fundamental frequencies (3 for a 6D system).

To properly study the harmonics of a system, it is helpful to retreive these linear combinations as done below:

# Let's assume the following dictionnary of phase space data:
data = {"x": x, "px": px, "y": y, "py": py, "zeta": zeta, "pzeta": pzeta}

# Let's extract the fundamental frequencies
Q_vec = [
    nafflib.tune(data[f"{plane}"], data[f"p{plane}"]) for plane in ["x", "y", "zeta"]
]

# Let's extract some harmonics
Ax, Qx = nafflib.harmonics(x, px, num_harmonics=5)

# Indexing harmonics
#============================================================================
max_n       = 90  #(high numbers needed in 2D..)
max_alias   = 50
warning_tol = np.inf #Disable warnings
#-------------------------------------
nx      = nafflib.linear_combinations(Qx,   Qvec    = Qvec,
                                            max_n   = max_n,
                                            max_alias   = max_alias, 
                                            warning_tol = warning_tol)
#============================================================================

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nafflib-2.1.1.tar.gz (22.9 kB view details)

Uploaded Source

File details

Details for the file nafflib-2.1.1.tar.gz.

File metadata

  • Download URL: nafflib-2.1.1.tar.gz
  • Upload date:
  • Size: 22.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.0

File hashes

Hashes for nafflib-2.1.1.tar.gz
Algorithm Hash digest
SHA256 e4c67224c01db4b694d8f9c73c5b878178d80379ad99ae89adb4cce21ededd9b
MD5 3dbbe75ef49df5d6f895620ff6a2112f
BLAKE2b-256 010d3d563dfc173916d5c0cc1fe614cdf312877540b9cea5bcd50a271ba5f6a3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page