Skip to main content

Code to process ion spectrometer data files

Project description

NAIS Processor

Code package to process NAIS (Neutral cluster and Air Ion Spectrometer, Airel Ltd.) data files.

Installation

pip install nais-processor

Documentation

See here

Processor

The nais.processor module can be used to process the data to netcdf files and allows options for the following operations:

  • Inlet loss correction (Gromley and Kennedy, 1948)
  • Ion mode correction (Wagner et al. 2016)
  • Conversion to standard conditions (273.15 K, 101325 Pa)
  • Remove charger ion band from total particle data
  • Use fill values in case of missing environmental sensor data

Example usage

Use the make_config_template()method to create a configuration file template and fill it with necessary information. The configuration file is used at processing the data files.

For example:

>>> from nais.processor import make_config_template
>>> make_config_template("/home/user/viikki.yml")

This will create a configuration file template called /home/user/viikki.yml. After filling in the information for our example measurement the file may look like this:

measurement_location: Viikki, Helsinki, Finland
longitude: 25.02
latitude: 60.23
data_folder:
- /home/user/data/2021
- /home/user/data/2022
processed_folder: /home/user/viikki
database_file: /home/user/viikki.json 
start_date: 2022-09-28
end_date: 2022-09-30
inlet_length: 1.0
do_inlet_loss_correction: true
convert_to_standard_conditions: true
do_wagner_ion_mode_correction: true
remove_corona_ions: true
allow_reprocess: false
use_fill_values: true
fill_temperature: 273.15
fill_pressure: 101325.0
fill_flowrate: 54.0

Then process the data files by running nais_processor() method with the config file as the input argument.

In our example case:

>>> from nais.processor import nais_processor
>>> nais_processor("/home/user/viikki.yml")
Building database...
Processing 20220928 (Viikki, Helsinki, Finland)
Processing 20220929 (Viikki, Helsinki, Finland)
Processing 20220930 (Viikki, Helsinki, Finland)
Done!

The code produces daily processed data files NAIS_yyyymmdd.nc (netCDF format). These files are saved in the destination given in the configuration file.

The locations of raw and processed files for each day are written in the JSON formatted database_file.

netCDF files

Fields Dimensions Data type Units Comments
Coordinates
time time datetime64[ns] timezone: utc
diameter diameter float m particle diameter
flag flag string
Data variables
neg_ions time,diameter float cm-3 dN/dlogDp
pos_ions time,diameter float cm-3 dN/dlogDp
neg_particles time,diameter float cm-3 dN/dlogDp
pos_particles time,diameter float cm-3 dN/dlogDp
neg_ion_flags time,flag int flag=1, no flag=0
pos_ion_flags time,flag int flag=1, no flag=0
neg_particle_flags time,flag int flag=1, no flag=0
pos_particle_flags time,flag int flag=1, no flag=0
Attributes
Measurement info dictionary

Utils

The nais.utils module contains functions that allow one to do operations on the NAIS data files.

For example combine the previously created files into a single continuous dataset with two hour time resolution and only raise a flag if at least 90% of the data points inside the two hour window contain the flag. Then save it at as a netcdf file.

from nais.utils import combine_data
import pandas as pd

data_source = "/home/user/viikki"
date_range = pd.date_range("2022-09-28","2022-09-30")

combine_data(data_source, date_range, "2H",
    flag_sensitivity=0.9).to_netcdf("combined_nais_dataset.nc")

Checker

With the nais.checker module one can visually inspect the nais ion/aerosol size distributions along with the flags and identify bad data by drawing a bounding box around it and saving the coordinates.

>>> from nais.checker import startNaisChecker
>>> startNaisChecker("combined_nais_dataset.nc","bad_data_bounds.nc")

License

This project is licensed under the terms of the GNU GPLv3.

References

Gormley P. G. and Kennedy M., Diffusion from a Stream Flowing through a Cylindrical Tube, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 52, (1948-1950), pp. 163-169.

Wagner R., Manninen H.E., Franchin A., Lehtipalo K., Mirme S., Steiner G., Petäjä T. and Kulmala M., On the accuracy of ion measurements using a Neutral cluster and Air Ion Spectrometer, Boreal Environment Research, 21, (2016), pp. 230–241.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nais-processor-0.0.24.tar.gz (134.1 kB view details)

Uploaded Source

Built Distribution

nais_processor-0.0.24-py3-none-any.whl (28.8 kB view details)

Uploaded Python 3

File details

Details for the file nais-processor-0.0.24.tar.gz.

File metadata

  • Download URL: nais-processor-0.0.24.tar.gz
  • Upload date:
  • Size: 134.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for nais-processor-0.0.24.tar.gz
Algorithm Hash digest
SHA256 4cd1f00fcd80a940b35cd38d40c84da89669890883f2669cb2adcf486cb11be7
MD5 551c1945834c5755678af0363d8394a6
BLAKE2b-256 132415419de833c610a98b246fbca56f5c550c32c4433b2ff6cd41f27f854d6d

See more details on using hashes here.

File details

Details for the file nais_processor-0.0.24-py3-none-any.whl.

File metadata

File hashes

Hashes for nais_processor-0.0.24-py3-none-any.whl
Algorithm Hash digest
SHA256 e087b755edbc255d5b61619773612639831515309565e62dcf93df877fb47287
MD5 7f2b63a2b7bf00cd72558b58f0b70f2a
BLAKE2b-256 b6264ff159f1bde3b71ff5af9b30d8cf7db38b8e2c67eaa7f2f2a36199b7e7cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page