Skip to main content

Code to process ion spectrometer data files

Project description

logo


NAIS Processor

Code package to process NAIS (Neutral cluster and Air Ion Spectrometer, Airel Ltd.) data files.

Installation

pip install nais-processor

Documentation

See here

Modules

Processor

The nais.processor module can be used to process the data to netcdf files and allows options for the following operations:

  • Inlet loss correction (Gromley and Kennedy, 1948)
  • Ion mode correction (Wagner et al. 2016)
  • Conversion to standard conditions (273.15 K, 101325 Pa)
  • Remove charger ion band from total particle data
  • Use fill values in case of missing environmental sensor data

Utils

The nais.utils module contains functions that allow one to do operations on the NAIS data files.

Checker

The nais.checker module contains a GUI application with which one can visually inspect the nais ion/aerosol size distributions along with the flags and identify bad data by drawing a bounding box around it and saving the coordinates for later use.

Example usage

Use the make_config_template() method to create a configuration file template and fill it with necessary information. The configuration file is used at processing the data files.

from nais.processor import make_config_template
make_config_template("/home/user/viikki.yml")

Running this will create a configuration file template called /home/user/viikki.yml. After filling in the information in the confguration file for our example measurement the file may look like this:

measurement_location: Viikki, Helsinki, Finland
longitude: 25.02
latitude: 60.23
data_folder:
- /home/user/data/2021
- /home/user/data/2022
processed_folder: /home/user/viikki
database_file: /home/user/viikki.json
start_date: 2022-09-28
end_date: 2022-09-30
inlet_length: 1.0
do_inlet_loss_correction: true
convert_to_standard_conditions: true
do_wagner_ion_mode_correction: true
remove_corona_ions: true
allow_reprocess: false
redo_database: false
use_fill_values: true
fill_temperature: 273.15
fill_pressure: 101325.0
fill_flowrate: 54.0
dilution_on: false
file_format: block
resolution: 300 

Then process the data files by running nais_processor() method with the config file as the input argument.

In our example case:

from nais.processor import nais_processor
nais_processor("/home/user/viikki.yml")
Building database...
Processing 20220928 (Viikki, Helsinki, Finland)
Processing 20220929 (Viikki, Helsinki, Finland)
Processing 20220930 (Viikki, Helsinki, Finland)
Done!

The code produces daily processed data files NAIS_yyyymmdd.nc (netCDF format). These files are saved in the destination given in the configuration file.

The locations of raw and processed files for each day are written in the JSON formatted database_file. This prevents reprocessing when allow_reprocess: false.

The netcdf files have the following structure:

Fields Dimensions Data type Units Comments
Coordinates
time time datetime64[ns] timezone: utc
diameter diameter float m particle diameter
flag flag string
Data variables
neg_ions time,diameter float cm-3 dN/dlogDp
pos_ions time,diameter float cm-3 dN/dlogDp
neg_particles time,diameter float cm-3 dN/dlogDp
pos_particles time,diameter float cm-3 dN/dlogDp
neg_ion_flags time,flag int flag=1, no flag=0
pos_ion_flags time,flag int flag=1, no flag=0
neg_particle_flags time,flag int flag=1, no flag=0
pos_particle_flags time,flag int flag=1, no flag=0
Attributes
Measurement info dictionary

Next we combine the previously created files into a single continuous dataset with 1 hour time resolution and only raise a flag if at least 50% of the data points inside the two hour window contain the flag. We save it as a netcdf file.

from nais.utils import combine_data
import pandas as pd
import xarray as xr

data_source = "/home/user/viikki"
date_range = pd.date_range("2022-09-28","2022-09-30")

ds = combine_data(data_source, date_range, "1H",
    flag_sensitivity=0.5)

ds.to_netcdf("combined_nais_dataset.nc")

Then we launch the data checker with the combined data in order to identify bad data. Bounding boxes can be drawn around bad data in the size distributions (initiate an adjustable box with double left click and remove from the menu opened by right clicking the box). By clicking the save boundaries button the box coordinates are saved to a netcdf file (filename given in the second argument). If the bounding boxes are saved, they will be reloaded when the checker is reopened with same arguments, so save your work regularly in case the program crashes.

from nais.checker import startNaisChecker
startNaisChecker("combined_nais_dataset.nc", "bad_data_bounds.nc")

We can set the bad data to NaN in our combined file and use the resulting dataset as the starting point for further analysis.

from nais.utils import remove_bad_data

ds = xr.open_dataset("combined_nais_dataset.nc")
bad_data = xr.open_dataset("bad_data_bounds.nc")
ds = remove_bad_data(ds, bad_data)

License

This project is licensed under the terms of the GNU GPLv3.

References

Gormley P. G. and Kennedy M., Diffusion from a Stream Flowing through a Cylindrical Tube, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 52, (1948-1950), pp. 163-169.

Wagner R., Manninen H.E., Franchin A., Lehtipalo K., Mirme S., Steiner G., Petäjä T. and Kulmala M., On the accuracy of ion measurements using a Neutral cluster and Air Ion Spectrometer, Boreal Environment Research, 21, (2016), pp. 230–241.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nais-processor-0.0.29.tar.gz (141.5 kB view details)

Uploaded Source

Built Distribution

nais_processor-0.0.29-py3-none-any.whl (30.9 kB view details)

Uploaded Python 3

File details

Details for the file nais-processor-0.0.29.tar.gz.

File metadata

  • Download URL: nais-processor-0.0.29.tar.gz
  • Upload date:
  • Size: 141.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for nais-processor-0.0.29.tar.gz
Algorithm Hash digest
SHA256 771a262e19b175cbe439f6aaae0e5fa50aa61ae630c40d11e6b718db95478604
MD5 e4c54433cb4a9519686c0f14c8ba46ca
BLAKE2b-256 e044d59495c2f0d2296983b280dc19cf797fd3497223848655d954f69369094d

See more details on using hashes here.

File details

Details for the file nais_processor-0.0.29-py3-none-any.whl.

File metadata

File hashes

Hashes for nais_processor-0.0.29-py3-none-any.whl
Algorithm Hash digest
SHA256 352e2289adcc9d5341967df9e8100f9f286d449c612bc28e292a38d38a28a63f
MD5 788b8dd275edb0eadce89077a4208165
BLAKE2b-256 404e30d7f5fad10103344f85b07e03219138c2c5c61a5ce771dfb53b2279d90e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page