NLP toolkit, including tokenization, sequence tagging, etc.
Project description
naivenlp
NLP常用工具包。
主要包含以下模块:
Tokenizers
Tokenizer
的作用是分词, 同时具有把词语映射到ID的功能。
naivenlp.tokenizers
模块包含以下Tokenizer
实现:
JiebaTokenizer
,继承自VocabBasedTokenizer
,分词使用jieba
CustomTokenizer
,继承自VocabBasedTokenizer
,基于词典文件的Tokenizer
,包装tokenize_fn
自定义函数来实现各种自定义的Tokenizer
TransformerTokenizer
,继承自VocabBasedTokenizer
,用于Transformer
模型分词BertTokenizer
,继承自VocabBasedTokenizer
,用于BERT
模型分词
JiebaTokenizer的使用
分词过程使用jieba
。
from naivenlp.tokenizers import JiebaTokenizer
tokenizer = JiebaTokenizer(
vocab_file='vocab.txt',
pad_token='[PAD]',
unk_token='[UNK]',
bos_token='[BOS]',
eos_token='[EOS]',
)
tokenizer.tokenize('hello world!', mode=0, hmm=True)
tokenizer.encode('hello world!', add_bos=False, add_eos=False)
CustomTokenizer的使用
方便用户自定义分词过程。
以使用baidu/lac
来分词为例。
pip install lac
from naivenlp.tokenizers import CustomTokenizer
from LAC import LAC
lac = LAC(mode='seg')
def lac_tokenize(text, **kwargs):
return lac.run(text)
tokenizer = CustomTokenizer(
vocab_file='vocab.txt',
tokenize_fn=lac_tokenize,
pad_token='[PAD]',
unk_token='[UNK]',
bos_token='[BOS]',
eos_token='[EOS]',
)
tokenizer.tokenize('hello world!')
tokenizer.encode('hello world!', add_bos=False, add_eos=False)
BasicTokenizer的使用
这个分词器的使用很简单。不需要词典。它会根据空格来分词。它有以下功能:
- 按照空格和特殊字符分词
- 根据设置,决定是否大小写转换
- 根据设置,切分汉字,按照字的粒度分词
from naivenlp.tokenizers import BasicTokenizer
tokenizer = BasicTokenizer(do_lower_case=True, tokenize_chinese_chars=True)
tokenizer.tokenize('hello world, 你好世界')
WordpieceTokenizer的使用
Wordpiece
是一种分词算法,具体请自己查询相关文档。
WordpieceTokenizer
需要传入一个词典map。
from naivenlp.tokenizers import WordpieceTokenizer
tokenizer = WordpieceTokenizer(vocab=vocab, unk_token='[UNK]')
tokenizer.tokenize('hello world, 你好世界')
TransformerTokenizer的使用
from naivenlp.tokenizers import TransformerTokenizer
tokenizer = TransformerTokenizer(vocab_file='vocab.txt')
tokenizer.tokenize('Hello World, 你好世界')
tokenizer.encode('Hello World, 你好世界', add_bos=False, add_eos=False)
BertTokenizer的使用
from naivenlp.tokenizers import BertTokenizer
tokenizer = BertTokenizer(vocab_file='vocab.txt', cls_token='[CLS]', sep_token='[SEP]', mask_token='[MASK]')
tokenizer.tokenize('Hello World, 你好世界')
tokenizer.encode('Hello World, 你好世界', add_bos=False, add_eos=False)
Correctors
Similarity
多种字符串相似度的度量。是对luozhouyang/python-string-similarity的包装。
import naivenlp
a = 'ACCTTTDEX'
b = 'CGGTTEEXX'
naivenlp.cosine_distance(a, b)
naivenlp.cosine_similarity(a, b)
naivenlp.jaccard_distance(a, b)
naivenlp.jaccard_similarity(a, b)
naivenlp.levenshtein_distance(a, b)
naivenlp.levenshtein_distance_normalized(a, b)
naivenlp.levenshtein_similarity(a, b)
naivenlp.weighted_levenshtein_distance(a, b)
naivenlp.damerau_distance(a, b)
naivenlp.lcs_distance(a, b)
naivenlp.lcs_length(a, b)
naivenlp.sorense_dice_distance(a, b)
naivenlp.sorense_dice_similarity(a, b)
naivenlp.optimal_string_alignment_distance(a, b)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
naivenlp-0.0.4.tar.gz
(18.1 kB
view details)
Built Distribution
naivenlp-0.0.4-py3-none-any.whl
(25.3 kB
view details)
File details
Details for the file naivenlp-0.0.4.tar.gz
.
File metadata
- Download URL: naivenlp-0.0.4.tar.gz
- Upload date:
- Size: 18.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd6bed752870719a40d0ecc2c5bbd3145aba3ccfa3c5a2883991b14c96db7326 |
|
MD5 | 76a518f2f55d5d27b7b315de1e97a47d |
|
BLAKE2b-256 | 3169591494e19cff0f32f95ce8e129b59175c21374d0e8971c477a855863d460 |
File details
Details for the file naivenlp-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: naivenlp-0.0.4-py3-none-any.whl
- Upload date:
- Size: 25.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 88ad44c7597943252c57058425c4875ceb3730c16e0b7e817c5e7c2b381054c2 |
|
MD5 | a485ee57cfa1e66c55030cdca505e570 |
|
BLAKE2b-256 | 2b4893353d440b1aa0123ed3cb1a7a4d193fb661f21b804bc84891335323b35b |