Many-to-one keys-value pair relationship Python object manager.
Project description
namari
Many-to-one keys-value pair relationship Python object manager.
Usage
Install the latest namari package, upcoming versions might introduce unannounced changes, so a virtual environment is a must have before installation.
pip install --upgrade namari
To integrate namari into your Python codes, check the code snippet below:
from namari import Namari
# initialize
lexicon = Namari()
# initialize with filename
lexicon = Namari("filename.json")
# clear contents
lexicon.clear()
# set key-value pair
lexicon.set("yellow", "sun")
# check if key existing
if lexicon.contains("yellow"):
print("Exists")
# associate existing keys with a new and unique key
lexicon.attach("yellow", "hot")
lexicon.attach("yellow", "morning")
lexicon.attach("yellow", "tea")
lexicon.attach("morning", "summer")
lexicon.attach("morning", "cold")
lexicon.attach("morning", "tea")
# disassociate 2nd key from the 1st key
lexicon.detach("summer", "cold")
# get the value of the specified key
object = lexicon.get("morning") # None
# get the value of the specified key with specified fallback
object = lexicon.get("night", fallback="moon")
# get the first parent of child
parent = lexicon.findFirst("summer", fallback=None)
parents = lexicon.findAll("tea")
# count contents
count = lexicon.count()
# check if empty
if lexicon.is_empty():
print("Empty")
# iterate over all keys-value pairs
for keys, value in lexicon.items():
print(type(keys)) # list
print("\n".join(keys))
print(value)
Did you know?
The repository name namari
was inspired from the developer's noisy cat named Anna Marie, it also means as lead or guidance in Japanese.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
namari-1.1.4.tar.gz
(8.1 kB
view details)
Built Distribution
File details
Details for the file namari-1.1.4.tar.gz
.
File metadata
- Download URL: namari-1.1.4.tar.gz
- Upload date:
- Size: 8.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6399e3a4e9830700b0a99a0b558fc11d142f316eeeac1a4ec2ed4a19ac98b418 |
|
MD5 | 8973a908f2584bc62c62b67d863507f3 |
|
BLAKE2b-256 | 0c1298ba31f054d2f8721ca8f9efab59772713d57d59fdff87f25af8ca59e200 |
File details
Details for the file namari-1.1.4-py3-none-any.whl
.
File metadata
- Download URL: namari-1.1.4-py3-none-any.whl
- Upload date:
- Size: 5.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4b57ea47bccc9e54a48745eae71b032ee94149af1c00f740a2d745ffb8a9dd71 |
|
MD5 | 1487528d03c87ec4ce3f428706e6c9a2 |
|
BLAKE2b-256 | c44e2d78343b1f914e6e0b7dea237a4942efff3008db88ebc42bf5f3910bba0b |