Skip to main content

A lightweight gender classifier for Chinese given names

Project description

namesex_light

Namesex_light is a lighweight package that predicts the gender tendency of Chinese given names. This module comes with a L2 regularized logistic regression trained on 10,730 Chinese given names (in traditional Chinese) with reliable gender lables collected from public data. The predict() function takes a list of names and output predicted gender tendency (1 for male and 0 for female) or probability of being a male name. Namesex_light has a sister project, namesex, that performs similar tasks with higher accuracy.

Additional information about namesex and namesex_light can be found in another document (in Chinese).

The prediction performance evaluated by ten-fold cross validation is:

Metric Performance Performance Std. Dev.
Accuracy 0.8957 0.007327
F1 0.8920 0.007873
Precision 0.8852 0.012238
Recall 0.8991 0.008936
Logloss 114.35 6.413972

Use pip/pip3 to install namesex_light.:

pip install namesex_light

To use namesex_light, pass in an array or list of given names to predict(). For each element in the input list, predict() returns 1 or 0 for male or female prediction. Set “predprob = True” to return probability of being a male name. The following is a simple sample code.:

>>> import namesex_light
>>> nsl = namesex_light.namesex_light()
>>> nsl.predict(['民豪', '愛麗', '志明'])
array([1, 0, 1])
>>> nsl.predict(['民豪', '愛麗', '志明'], predprob=True)
array([0.99968932, 0.00530066, 0.9938986 ])

Note that namesex_light was trained using Chinese given names only. However, it may be used to classifier translated names as well:

>>> nsl.predict(['阿波羅', '阿波羅', '雷', '艾美', '布蘭妮', '阿曼達'])
array([1, 1, 1, 0, 0, 1])

This module is intended for a quick plug-and-play. The original training dataset is not included.

Testing Dataset

This package comes with a small testing dataset that was not used for model training. The following sample code illustrate a simple usage.:

>>> testdata = namesex_light.testdata()
>>> nsl = namesex_light.namesex_light()
>>> pred = nsl.predict(testdata.gname)
>>> print("The first 5 given names are: {}".format(testdata.gname[0:5]))
The first 5 given names are: ['翊如', '妤庭', '諆璋', '大閎', '和維']
>>> print("    and their sex:          {}".format(testdata.sex[0:5]))
    and their sex:          [0, 0, 1, 1, 1]
>>> print("    and their predicted sex:{}".format(pred[0:5]))
    and their predicted sex:[0 0 1 1 1]
>>> accuracy = np.sum(pred == testdata.sex) / len(pred)
>>> print(" Prediction accuracy = {}".format(accuracy))
 Prediction accuracy = 0.8627450980392157

Note that the accuracy is slightly lower compared to the accuracy of ten-fold cross valudation. I guess this is normal since this testset is collected from a source that is different from the training dataset.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
namesex_light-0.2.1-py3-none-any.whl (69.4 kB) Copy SHA256 hash SHA256 Wheel py3 Jul 11, 2018
namesex_light-0.2.1.tar.gz (4.7 kB) Copy SHA256 hash SHA256 Source None Jul 11, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page