Skip to main content

Loading, fitting, and rating AFM force-distance data

Project description

PyPI Version Build Status Coverage Status Docs Status

Loading, fitting, and rating AFM force-distance data.

Documentation

The documentation, including the code reference and examples, is available at nanite.readthedocs.io.

Installation

To install the latest release, simply run:

pip install nanite[CLI]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nanite-3.7.3.tar.gz (6.1 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

nanite-3.7.3-cp311-cp311-win_amd64.whl (138.3 kB view details)

Uploaded CPython 3.11Windows x86-64

nanite-3.7.3-cp311-cp311-win32.whl (135.2 kB view details)

Uploaded CPython 3.11Windows x86

nanite-3.7.3-cp311-cp311-musllinux_1_1_x86_64.whl (281.5 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

nanite-3.7.3-cp311-cp311-musllinux_1_1_i686.whl (271.8 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

nanite-3.7.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (282.3 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

nanite-3.7.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (273.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

nanite-3.7.3-cp311-cp311-macosx_10_9_x86_64.whl (137.9 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

nanite-3.7.3-cp310-cp310-win_amd64.whl (137.7 kB view details)

Uploaded CPython 3.10Windows x86-64

nanite-3.7.3-cp310-cp310-win32.whl (134.9 kB view details)

Uploaded CPython 3.10Windows x86

nanite-3.7.3-cp310-cp310-musllinux_1_1_x86_64.whl (264.3 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

nanite-3.7.3-cp310-cp310-musllinux_1_1_i686.whl (256.4 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

nanite-3.7.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (261.5 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

nanite-3.7.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (254.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

nanite-3.7.3-cp310-cp310-macosx_10_9_x86_64.whl (137.2 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file nanite-3.7.3.tar.gz.

File metadata

  • Download URL: nanite-3.7.3.tar.gz
  • Upload date:
  • Size: 6.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for nanite-3.7.3.tar.gz
Algorithm Hash digest
SHA256 33f1cf48733a8ed8ecb26b6f598415e4b83871f95bc20e06315569a9db274219
MD5 91c87239fcd65b8c9b6453872f5f59a0
BLAKE2b-256 4026bd98ee8fa38709ba08bc3707c3d98d5fa2b979317c25b6df79c8a598158a

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nanite-3.7.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 138.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for nanite-3.7.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2d2c6d138bc05d8779089e08d89e841fbe090ee4475de4d1e532bb5a0d482d68
MD5 a254d6439c9d26106f1e181efc66a611
BLAKE2b-256 94134e137e7d5ded4cfcaa8c4ccd61f8ae0712f6ced0b76b7169c2e1cc4d7551

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: nanite-3.7.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 135.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for nanite-3.7.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c426d12b4dc8d864874afcea85a667f8d82a14e506e592c728bcd02fea9a71d4
MD5 a8c6600dd721368d16684f7420107249
BLAKE2b-256 b906c764ba968afea9447c82b93aa0138403d14619b6ee526c0f4c5cd64a4c2f

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nanite-3.7.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 103c2375d97f0bd51e8f60b839e089867c9c0fcf0abdc1809123cca1380f60a6
MD5 d78387bb5166f473d99c8de75f409270
BLAKE2b-256 1dda6c916a7cc82bd6a8adda12a64050992ee126a8d650536ebc334ae2cf084b

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nanite-3.7.3-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d843e5d13aa5e9acb50d3db0e9c44ad68d30f8ff56c5c03be155137b0ef43006
MD5 a81b2121d7801277155a81fb30a85759
BLAKE2b-256 68f28f5c3c68eef2eca107c0b6b526563ac65f24feb479273bf7d4cd58b1a103

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanite-3.7.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93fdae40f81d4991c84f821b397ede1f5ab3d2153ca2f43b73520b612999d7fb
MD5 d9fc3d91a850f3a059fd6d515113154b
BLAKE2b-256 4101984eaa3560b4f32ef492bc90758d4a97bd86b091b1a3f61fe3e914a979ca

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanite-3.7.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cd18fa7c1c6b02ef8b3174aa9451916eb220321e6524982c400383e7be40981e
MD5 8f8a4c5bab35618342f431aa7b9a2ce6
BLAKE2b-256 47fe3a7ccf79d46ff35fe7e0030b87b6f9fd4060647349cdc9e66d94036b7cd1

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanite-3.7.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 627a1af5f19daef8ba989eee2320c25f492792dbf5455a4cc5e3354ec2b05dc6
MD5 bc5afd4999167dd37882d930ab7c7b0a
BLAKE2b-256 22ac375f45ef14ef2519b5917b285ba4caacc7eb4a81a624c1708d59a31e21ad

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nanite-3.7.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 137.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for nanite-3.7.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b6b21ea825f0fa57e6852d30f1f939784f71c1bc1a13ede253c9cf4d7c825d38
MD5 7d5472b9ea75d576a3861c9dae288ff1
BLAKE2b-256 0e7deab7dd6df2744c67ba458aee36370e8e1c4b6acf0ace39c5c98d33ca817b

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: nanite-3.7.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 134.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for nanite-3.7.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ae990d58dc4d98ebbadc578e42b0a053a862c1b9de522bec580a7a6b1d39cdb1
MD5 cd2fe3ebf130f8f7fddbddc23ee79d34
BLAKE2b-256 03c7be403d0f208f38757631bcd71f28ca4b1dcfd5e139d67a78239ad7e4bdaa

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nanite-3.7.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 70431d1d8d696fe042e67ed3beee304071c9848eb1b15e76ff10c890c58886d3
MD5 a56bb183c36c781fbf5d503e2c5051eb
BLAKE2b-256 ac6806406e49ab1e9ac2a82f6f46fe83fe70e8eb978ea0d88d7fed5d859f7822

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nanite-3.7.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 68bc0a4a320b5744230f81c6d6e3e9d83f4e20105e205ec024a67287b30b1837
MD5 6f06e409bdf941e7a637d104f287f1ec
BLAKE2b-256 a8c0ed41a6bf4cbbbe4b451c819f0b6c7314448d60b05f7459be45d568a44d21

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanite-3.7.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09c7f68ceb6dcff7ac48c9aa70fd89cc4dcda9a0f428ac5e3fd2887f2e0d0c30
MD5 2bcba387d28b68b04835ddcab3d914c5
BLAKE2b-256 e53cbf81707faf01434bc37af7cb91e2e32e2c294bd706042147fb3423925a72

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanite-3.7.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dcdbafe6161f4093d6d9ffd972e0210306dca6eef93a0cfbe38fcc28d7931d64
MD5 4addff251d1e1b8be18423e2e0d15fe6
BLAKE2b-256 014d769387a11e134196a0d2fa2e069ad06386919226d8dbb38df7c19375fa60

See more details on using hashes here.

File details

Details for the file nanite-3.7.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanite-3.7.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f781c799965bbc35171d529122d3b49678567e253e906658185b0da5637abfff
MD5 59bff5386416f0b22a15f9ee4ed1b032
BLAKE2b-256 158d8823bdf27d056beb91b61724d0b6ab3b59df31d27875b91f41d103f3f943

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page