The NannyML library, monitoring model performance since 2020.
Project description
Website • Docs • Community Slack
Basic overview
NannyML helps you monitor your ML models in production by:
- estimating performance in absence of ground truth
- calculating realized performance metrics
- detecting data drift on model inputs, model outputs and targets
Installing the latest stable release
pip install nannyml
Installing the latest development version
python -m pip install git+https://github.com/NannyML/nannyml
Getting started
import nannyml as nml
import pandas as pd
# Load some data
reference_data, analysis_data, _ = nml.load_synthetic_sample()
data = pd.concat([reference_data, analysis_data])
metadata = nml.extract_metadata(reference_data)
# Estimate performance
estimator = nml.CBPE(metadata).fit(reference_data)
estimates = estimator.estimate(data)
estimates.plot(kind='performance').show()
Examples
- Performance estimation
- Realized performance calculation
- Univariate model input drift detection
- Multivariate model input drift detection
- Model output drift detection
- Model target distribution
Development setup
- Read the docs on how to contribute
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
nannyml-0.3.1.tar.gz
(5.7 MB
view details)
Built Distribution
File details
Details for the file nannyml-0.3.1.tar.gz
.
File metadata
- Download URL: nannyml-0.3.1.tar.gz
- Upload date:
- Size: 5.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
52c52579088020b5400630d9fac8d0c1fd78958a5471fe031c3cbb8b61915ff0
|
|
MD5 |
3efb279546f2092643617bf4bf107e8e
|
|
BLAKE2b-256 |
9c41e05acf569b694af07c586808d5f12b4a2938e598aaf4ba1b71c4efeb40c5
|
File details
Details for the file nannyml-0.3.1-py3-none-any.whl
.
File metadata
- Download URL: nannyml-0.3.1-py3-none-any.whl
- Upload date:
- Size: 5.8 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
c0b413b2c3a28da5a06cea8262a868ca8fd8e2b292086c3fe22e136609a67505
|
|
MD5 |
c9049281895501c87b6926e0c21ac308
|
|
BLAKE2b-256 |
f9ad5d5b815b93da0d9ead3d03213b4a1a3514cdba331810eb5bb4da8a3581c6
|