Skip to main content

A simple, easy-to-hack Vector Database implementation

Project description

nano-VectorDB

A simple, easy-to-hack Vector Database

🌬️ A vector database implementation with single-dependency (numpy).

🎁 It can handle a query from 100,000 vectors and return in 100 milliseconds.

🏃 It's okay for your prototypes, maybe even more.

Install

Install from PyPi

pip install nano-vectordb

Install from source

# clone this repo first
cd nano-vectordb
pip install -e .

Quick Start

Faking your data:

from nano_vectordb import NanoVectorDB
import numpy as np

data_len = 100_000
fake_dim = 1024
fake_embeds = np.random.rand(data_len, fake_dim)    

fakes_data = [{"__vector__": fake_embeds[i], **ANYFIELDS} for i in range(data_len)]

You can add any fields to a data. But there are two keywords:

  • __id__: If passed, NanoVectorDB will use your id, otherwise a generated id will be used.
  • __vector__: must pass, your embedding np.ndarray.

Init a DB:

vdb = NanoVectorDB(fake_dim, storage_file="fool.json")

Next time you init vdb from fool.json, NanoVectorDB will load the index automatically.

Upsert:

r = vdb.upsert(fakes_data)
print(r["update"], r["insert"])

Query:

print(vdb.query(np.random.rand(fake_dim)))

Save:

# will create/overwrite 'fool.json'
vdb.save()

Get, Delete:

# get and delete the inserted data
print(vdb.get(r["insert"]))
vdb.delete(r["insert"])

Benchmark

Embedding Dim: 1024. Device: MacBook M3 Pro

  • Save a index with 100,000 vectors will generate a roughly 520M json file.
  • Insert 100,000 vectors will cost roughly 2s
  • Query from 100,000 vectors will cost roughly 0.1s

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nano_vectordb-0.0.1.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

nano_vectordb-0.0.1-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file nano_vectordb-0.0.1.tar.gz.

File metadata

  • Download URL: nano_vectordb-0.0.1.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for nano_vectordb-0.0.1.tar.gz
Algorithm Hash digest
SHA256 ff4b943895d36325e8db9dadf9136142a1ad6690546e0a632f14cc801928de56
MD5 1678886c096e9b75438d061bd5052b57
BLAKE2b-256 602c45835c9be883182ddd1c6ad196feb6dd85b0f360159c8aa7d6047fe35eec

See more details on using hashes here.

File details

Details for the file nano_vectordb-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for nano_vectordb-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6e0527e15a838116c84dd9d2aecfe6edb598705a70b5495d4b02d20490063954
MD5 c8a85311e629f74a166a85e9eb384b56
BLAKE2b-256 8018a6b917b35e37c84d6bc033854a2de291e89fe94e69b210c8c7ac6ea0ca87

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page