Skip to main content

A simple, easy-to-hack Vector Database implementation

Project description

nano-VectorDB

A simple, easy-to-hack Vector Database

🌬️ A vector database implementation with single-dependency (numpy).

🎁 It can handle a query from 100,000 vectors and return in 100 milliseconds.

🏃 It's okay for your prototypes, maybe even more.

Install

Install from PyPi

pip install nano-vectordb

Install from source

# clone this repo first
cd nano-vectordb
pip install -e .

Quick Start

Faking your data:

from nano_vectordb import NanoVectorDB
import numpy as np

data_len = 100_000
fake_dim = 1024
fake_embeds = np.random.rand(data_len, fake_dim)    

fakes_data = [{"__vector__": fake_embeds[i], **ANYFIELDS} for i in range(data_len)]

You can add any fields to a data. But there are two keywords:

  • __id__: If passed, NanoVectorDB will use your id, otherwise a generated id will be used.
  • __vector__: must pass, your embedding np.ndarray.

Init a DB:

vdb = NanoVectorDB(fake_dim, storage_file="fool.json")

Next time you init vdb from fool.json, NanoVectorDB will load the index automatically.

Upsert:

r = vdb.upsert(fakes_data)
print(r["update"], r["insert"])

Query:

print(vdb.query(np.random.rand(fake_dim)))

Save:

# will create/overwrite 'fool.json'
vdb.save()

Get, Delete:

# get and delete the inserted data
print(vdb.get(r["insert"]))
vdb.delete(r["insert"])

Benchmark

Embedding Dim: 1024. Device: MacBook M3 Pro

  • Save a index with 100,000 vectors will generate a roughly 520M json file.
  • Insert 100,000 vectors will cost roughly 2s
  • Query from 100,000 vectors will cost roughly 0.1s

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nano_vectordb-0.0.2.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

nano_vectordb-0.0.2-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file nano_vectordb-0.0.2.tar.gz.

File metadata

  • Download URL: nano_vectordb-0.0.2.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for nano_vectordb-0.0.2.tar.gz
Algorithm Hash digest
SHA256 6abbabbba3774712563385c631d4999ab8e60b4517f03124c2805abe2625f036
MD5 ac40737b70ffc4a99ba103378e7b83df
BLAKE2b-256 612e71cf02ab59f67bcf239d49317d98e42cd2658065334bded6ad96fb3909d7

See more details on using hashes here.

File details

Details for the file nano_vectordb-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for nano_vectordb-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9050701ece18da9f4ed60b01755f1918722d0812b9c00060b24b2dd8d3a3e657
MD5 6951a03c7d865827ebc51feedb19088d
BLAKE2b-256 d8cfbeba37853b26859d955cfd47975fcfe8a5f200040e9463bc7c625def1130

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page