Skip to main content

A simple, easy-to-hack Vector Database implementation

Project description

nano-VectorDB

A simple, easy-to-hack Vector Database

🌬️ A vector database implementation with single-dependency (numpy).

🎁 It can handle a query from 100,000 vectors and return in 100 milliseconds.

🏃 It's okay for your prototypes, maybe even more.

Install

Install from PyPi

pip install nano-vectordb

Install from source

# clone this repo first
cd nano-vectordb
pip install -e .

Quick Start

Faking your data:

from nano_vectordb import NanoVectorDB
import numpy as np

data_len = 100_000
fake_dim = 1024
fake_embeds = np.random.rand(data_len, fake_dim)    

fakes_data = [{"__vector__": fake_embeds[i], **ANYFIELDS} for i in range(data_len)]

You can add any fields to a data. But there are two keywords:

  • __id__: If passed, NanoVectorDB will use your id, otherwise a generated id will be used.
  • __vector__: must pass, your embedding np.ndarray.

Init a DB:

vdb = NanoVectorDB(fake_dim, storage_file="fool.json")

Next time you init vdb from fool.json, NanoVectorDB will load the index automatically.

Upsert:

r = vdb.upsert(fakes_data)
print(r["update"], r["insert"])

Query:

print(vdb.query(np.random.rand(fake_dim)))

Save:

# will create/overwrite 'fool.json'
vdb.save()

Get, Delete:

# get and delete the inserted data
print(vdb.get(r["insert"]))
vdb.delete(r["insert"])

Benchmark

Embedding Dim: 1024. Device: MacBook M3 Pro

  • Save a index with 100,000 vectors will generate a roughly 520M json file.
  • Insert 100,000 vectors will cost roughly 2s
  • Query from 100,000 vectors will cost roughly 0.1s

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nano_vectordb-0.0.3.tar.gz (4.8 kB view details)

Uploaded Source

Built Distribution

nano_vectordb-0.0.3-py3-none-any.whl (4.4 kB view details)

Uploaded Python 3

File details

Details for the file nano_vectordb-0.0.3.tar.gz.

File metadata

  • Download URL: nano_vectordb-0.0.3.tar.gz
  • Upload date:
  • Size: 4.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for nano_vectordb-0.0.3.tar.gz
Algorithm Hash digest
SHA256 0ac33df057c36378ac9c7c0666aa0e99004f12175d8fa9729fee8b760da8839c
MD5 9153ba1f9025b87156ad851832c04390
BLAKE2b-256 e7410d9c2b8fe24676b800588e9a848929b21121cf17c265fc72305f105c570d

See more details on using hashes here.

File details

Details for the file nano_vectordb-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for nano_vectordb-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e1b0ab70962ccaea6e706be0e166adad4aa76d4bfd3ec622803833d18398200b
MD5 08e4500e3690284da51d972987cef5ea
BLAKE2b-256 0437368f496de77183234ada1d459b47c4efd9ec450c9f49f7565070e7715a48

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page