Skip to main content

Python bindings to the nanoarrow C library

Project description

nanoarrow for Python

The nanoarrow Python package provides bindings to the nanoarrow C library. Like the nanoarrow C library, it provides tools to facilitate the use of the Arrow C Data and Arrow C Stream interfaces.

Installation

The nanoarrow Python bindings are available from PyPI and conda-forge:

pip install nanoarrow
conda install nanoarrow -c conda-forge

Development versions (based on the main branch) are also available:

pip install --extra-index-url https://pypi.fury.io/arrow-nightlies/ \
    --prefer-binary --pre nanoarrow

If you can import the namespace, you're good to go!

import nanoarrow as na

Data types, arrays, and array streams

The Arrow C Data and Arrow C Stream interfaces are comprised of three structures: the ArrowSchema which represents a data type of an array, the ArrowArray which represents the values of an array, and an ArrowArrayStream, which represents zero or more ArrowArrays with a common ArrowSchema. These concepts map to the nanoarrow.Schema, nanoarrow.Array, and nanoarrow.ArrayStream in the Python package.

na.int32()
<Schema> int32
na.Array([1, 2, 3], na.int32())
nanoarrow.Array<int32>[3]
1
2
3

The nanoarrow.Array can accommodate arrays with any number of chunks, reflecting the reality that many array containers (e.g., pyarrow.ChunkedArray, polars.Series) support this.

chunked = na.Array.from_chunks([[1, 2, 3], [4, 5, 6]], na.int32())
chunked
nanoarrow.Array<int32>[6]
1
2
3
4
5
6

Whereas chunks of an Array are always fully materialized when the object is constructed, the chunks of an ArrayStream have not necessarily been resolved yet.

stream = na.ArrayStream(chunked)
stream
nanoarrow.ArrayStream<int32>
with stream:
    for chunk in stream:
        print(chunk)
nanoarrow.Array<int32>[3]
1
2
3
nanoarrow.Array<int32>[3]
4
5
6

The nanoarrow.ArrayStream also provides an interface to nanoarrow's Arrow IPC reader:

url = "https://github.com/apache/arrow-experiments/raw/main/data/arrow-commits/arrow-commits.arrows"
na.ArrayStream.from_url(url)
nanoarrow.ArrayStream<non-nullable struct<commit: string, time: timestamp('us', 'UTC'), files: int3...>

These objects implement the Arrow PyCapsule interface for both producing and consuming and are interchangeable with pyarrow objects in many cases:

import pyarrow as pa

pa.field(na.int32())
pyarrow.Field<: int32>
pa.chunked_array(chunked)
<pyarrow.lib.ChunkedArray object at 0x12a49a250>
[
  [
    1,
    2,
    3
  ],
  [
    4,
    5,
    6
  ]
]
pa.array(chunked.chunk(1))
<pyarrow.lib.Int32Array object at 0x11b552500>
[
  4,
  5,
  6
]
na.Array(pa.array([10, 11, 12]))
nanoarrow.Array<int64>[3]
10
11
12
na.Schema(pa.string())
<Schema> string

Low-level C library bindings

The nanoarrow Python package also provides lower level wrappers around Arrow C interface structures. You can create these using nanoarrow.c_schema(), nanoarrow.c_array(), and nanoarrow.c_array_stream().

Schemas

Use nanoarrow.c_schema() to convert an object to an ArrowSchema and wrap it as a Python object. This works for any object implementing the Arrow PyCapsule Interface (e.g., pyarrow.Schema, pyarrow.DataType, and pyarrow.Field).

na.c_schema(pa.decimal128(10, 3))
<nanoarrow.c_schema.CSchema decimal128(10, 3)>
- format: 'd:10,3'
- name: ''
- flags: 2
- metadata: NULL
- dictionary: NULL
- children[0]:

Using c_schema() is a good fit for testing and for ephemeral schema objects that are being passed from one library to another. To extract the fields of a schema in a more convenient form, use Schema():

schema = na.Schema(pa.decimal128(10, 3))
schema.precision, schema.scale
(10, 3)

The CSchema object cleans up after itself: when the object is deleted, the underlying ArrowSchema is released.

Arrays

You can use nanoarrow.c_array() to convert an array-like object to an ArrowArray, wrap it as a Python object, and attach a schema that can be used to interpret its contents. This works for any object implementing the Arrow PyCapsule Interface (e.g., pyarrow.Array, pyarrow.RecordBatch).

na.c_array(["one", "two", "three", None], na.string())
<nanoarrow.c_array.CArray string>
- length: 4
- offset: 0
- null_count: 1
- buffers: (4754305168, 4754307808, 4754310464)
- dictionary: NULL
- children[0]:

Using c_array() is a good fit for testing and for ephemeral array objects that are being passed from one library to another. For a higher level interface, use Array():

array = na.Array(["one", "two", "three", None], na.string())
array.to_pylist()
['one', 'two', 'three', None]
array.buffers
(nanoarrow.c_lib.CBufferView(bool[1 b] 11100000),
 nanoarrow.c_lib.CBufferView(int32[20 b] 0 3 6 11 11),
 nanoarrow.c_lib.CBufferView(string[11 b] b'onetwothree'))

Advanced users can create arrays directly from buffers using c_array_from_buffers():

na.c_array_from_buffers(
    na.string(),
    2,
    [None, na.c_buffer([0, 3, 6], na.int32()), b"abcdef"]
)
<nanoarrow.c_array.CArray string>
- length: 2
- offset: 0
- null_count: 0
- buffers: (0, 5002908320, 4999694624)
- dictionary: NULL
- children[0]:

Array streams

You can use nanoarrow.c_array_stream() to wrap an object representing a sequence of CArrays with a common CSchema to an ArrowArrayStream and wrap it as a Python object. This works for any object implementing the Arrow PyCapsule Interface (e.g., pyarrow.RecordBatchReader, pyarrow.ChunkedArray).

pa_batch = pa.record_batch({"col1": [1, 2, 3]})
reader = pa.RecordBatchReader.from_batches(pa_batch.schema, [pa_batch])
array_stream = na.c_array_stream(reader)
array_stream
<nanoarrow.c_array_stream.CArrayStream>
- get_schema(): struct<col1: int64>

You can pull the next array from the stream using .get_next() or use it like an iterator. The .get_next() method will raise StopIteration when there are no more arrays in the stream.

for array in array_stream:
    print(array)
<nanoarrow.c_array.CArray struct<col1: int64>>
- length: 3
- offset: 0
- null_count: 0
- buffers: (0,)
- dictionary: NULL
- children[1]:
  'col1': <nanoarrow.c_array.CArray int64>
    - length: 3
    - offset: 0
    - null_count: 0
    - buffers: (0, 2642948588352)
    - dictionary: NULL
    - children[0]:

Use ArrayStream() for a higher level interface:

reader = pa.RecordBatchReader.from_batches(pa_batch.schema, [pa_batch])
na.ArrayStream(reader).read_all()
nanoarrow.Array<non-nullable struct<col1: int64>>[3]
{'col1': 1}
{'col1': 2}
{'col1': 3}

Development

Python bindings for nanoarrow are managed with setuptools. This means you can build the project using:

git clone https://github.com/apache/arrow-nanoarrow.git
cd arrow-nanoarrow/python
pip install -e .

Tests use pytest:

# Install dependencies
pip install -e ".[test]"

# Run tests
pytest -vvx

CMake is currently required to ensure that the vendored copy of nanoarrow in the Python package stays in sync with the nanoarrow sources in the working tree.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nanoarrow-0.5.0.tar.gz (359.5 kB view details)

Uploaded Source

Built Distributions

nanoarrow-0.5.0-pp310-pypy310_pp73-win_amd64.whl (362.7 kB view details)

Uploaded PyPy Windows x86-64

nanoarrow-0.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (468.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nanoarrow-0.5.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (450.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nanoarrow-0.5.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (502.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.5.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (414.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nanoarrow-0.5.0-pp39-pypy39_pp73-win_amd64.whl (362.3 kB view details)

Uploaded PyPy Windows x86-64

nanoarrow-0.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (468.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nanoarrow-0.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (448.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nanoarrow-0.5.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (501.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.5.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (413.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nanoarrow-0.5.0-pp38-pypy38_pp73-win_amd64.whl (363.0 kB view details)

Uploaded PyPy Windows x86-64

nanoarrow-0.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (480.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nanoarrow-0.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (460.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nanoarrow-0.5.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (514.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.5.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (419.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nanoarrow-0.5.0-cp312-cp312-win_amd64.whl (422.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

nanoarrow-0.5.0-cp312-cp312-win32.whl (373.3 kB view details)

Uploaded CPython 3.12 Windows x86

nanoarrow-0.5.0-cp312-cp312-musllinux_1_1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

nanoarrow-0.5.0-cp312-cp312-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

nanoarrow-0.5.0-cp312-cp312-musllinux_1_1_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

nanoarrow-0.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nanoarrow-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

nanoarrow-0.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.5.0-cp312-cp312-macosx_11_0_arm64.whl (499.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

nanoarrow-0.5.0-cp312-cp312-macosx_10_9_x86_64.whl (539.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

nanoarrow-0.5.0-cp311-cp311-win_amd64.whl (422.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

nanoarrow-0.5.0-cp311-cp311-win32.whl (371.4 kB view details)

Uploaded CPython 3.11 Windows x86

nanoarrow-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

nanoarrow-0.5.0-cp311-cp311-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

nanoarrow-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

nanoarrow-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nanoarrow-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

nanoarrow-0.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.5.0-cp311-cp311-macosx_11_0_arm64.whl (503.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

nanoarrow-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl (539.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nanoarrow-0.5.0-cp310-cp310-win_amd64.whl (418.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

nanoarrow-0.5.0-cp310-cp310-win32.whl (370.8 kB view details)

Uploaded CPython 3.10 Windows x86

nanoarrow-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

nanoarrow-0.5.0-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

nanoarrow-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

nanoarrow-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nanoarrow-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

nanoarrow-0.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.5.0-cp310-cp310-macosx_11_0_arm64.whl (498.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

nanoarrow-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl (535.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nanoarrow-0.5.0-cp39-cp39-win_amd64.whl (419.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

nanoarrow-0.5.0-cp39-cp39-win32.whl (370.9 kB view details)

Uploaded CPython 3.9 Windows x86

nanoarrow-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

nanoarrow-0.5.0-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

nanoarrow-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

nanoarrow-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nanoarrow-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

nanoarrow-0.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.5.0-cp39-cp39-macosx_11_0_arm64.whl (500.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

nanoarrow-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl (536.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nanoarrow-0.5.0-cp38-cp38-win_amd64.whl (421.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

nanoarrow-0.5.0-cp38-cp38-win32.whl (372.0 kB view details)

Uploaded CPython 3.8 Windows x86

nanoarrow-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

nanoarrow-0.5.0-cp38-cp38-musllinux_1_1_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

nanoarrow-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

nanoarrow-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nanoarrow-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

nanoarrow-0.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.5.0-cp38-cp38-macosx_11_0_arm64.whl (498.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

nanoarrow-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl (533.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file nanoarrow-0.5.0.tar.gz.

File metadata

  • Download URL: nanoarrow-0.5.0.tar.gz
  • Upload date:
  • Size: 359.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for nanoarrow-0.5.0.tar.gz
Algorithm Hash digest
SHA256 ffeb1377d7d2ebc15f3f53a2bf6c4f7529ae85db439e7273ca86242f2175feff
MD5 ad00ea8dcf5e9145c26c0ade1f7c2db6
BLAKE2b-256 77c9d582ea77883394690dea4a6140588ef4a54da9ef6fa575c7fbb9d1fb5b92

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c851fe0791dd1b6a3440f6b7b4e6db64aa576e85b898475b2578277ce6c24264
MD5 3e5dd58a863b906048f44b786324f9c8
BLAKE2b-256 e88c811590e51f8cc330175308635c10d859822038342b3b7f0492356377d6de

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ee8634d95278888af5b941fdf48034aa0d70ec09aafa0ab7ac3fb1dfeab2b27
MD5 69936666e33a5f5292b02139c946c3ec
BLAKE2b-256 26a4ed4d517cee660317cb52bff9f4a6562af36665c326a0e44b1adf3d447763

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d954dabf4fd177bba70ddc7a37c1d30cd1e11cb7edc130127938b6fc41cf3bda
MD5 910556a651f44410f8bcae101ca38e58
BLAKE2b-256 b94096efba7cbb8682db26d6a6c76fbb926b0671cf11e4a5cb7fc0c7b6eecdf8

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 39c7cca57195a1c53061791e8d607e5bf4af289db0de828a5ed50357979faf39
MD5 6adb0210802e42406cf7afd590ece38a
BLAKE2b-256 072b531c48b0ccc510fb5de1dc7dee2447c2e808b3cfae713950eca833ff39f1

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b362302471446af5f96de433a04faaff6ff928c01006c579337ba5a809f2bb53
MD5 6c02b6c16cf0130fb096f4499437c5dd
BLAKE2b-256 a2a983faf8199f1bc4cb5f8889c1177eaf53cd4b174235592d8d64d4ea31c87a

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 665a0d41d22414d7b5a5cecae9617395472967d378baee84678600d30b1d4a4e
MD5 5dd6f6b5f2dab2e1ab5a719c3924da12
BLAKE2b-256 3500e19fab06dd3f7027a0e916d8fb6cdf6c49568e130f89408655ea80ca6df1

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6fdd95c34ad8772863f429307be8758dd063c9227b1e71704e4e35f86ad98a06
MD5 34ce5b379ed70dc308c1b17503fb8c2d
BLAKE2b-256 ea25d8d1c745097aa1e868b58b4aea8a10ca4d09db4ea4d27a4d96e317f01246

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d50f60a9d94522128f4d973b08a46efb9fc72dd95e83f4c42a9b006f860ef6eb
MD5 62519875a7a885ee6772cd2619e6839d
BLAKE2b-256 cbaf81bc89fe909976903a2cff56e2090f3ab7f682860d2e8c93d60e9851a641

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 445a865111ccc5b91d8615c3a7986d0a5ece5a4e1b8c068fd88732ea5a664179
MD5 52e4c371b5d87fbb9a8bd78fe21fa8ab
BLAKE2b-256 7a380e06215209a22e47688a8325473a79e23f9fc91a41dbdc1c8de75ac1585e

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2afd6f6e2854638d367081b8d8033edc9ad9e773e0c4af110230485884d7fe61
MD5 ee888f2261a6cbd829d6de2c959144dd
BLAKE2b-256 d083f91d714ce2055ec634360f8de6b19f46ffcfe6e88831b7ef613f5e0508ac

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d6cea2704adcc19890a7ddfc1b0d83446b358dd4b85358f6c01702bf2aae8f3d
MD5 b23253b928441c9a151914e3770d4b42
BLAKE2b-256 7688301f638b61b15399ac2975b756f48ca4a94d747b63e06b53f09dbce70b97

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 525f0b3276a398bb142ef125b129fda40a9d5dc4759fbc4244095f60b4f19413
MD5 33f17c29920475132b9dc989f51b131d
BLAKE2b-256 d9b0e5f241845a8912fc3719e2a2d51ccc3c8a0d575cc6f8e6a0a779f068fd02

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff6646a4e9774f7620928ffce5769f9f7fff8315919d252918420cf2e43f7bf9
MD5 61ebc75e78bfaf8b56452ff1d8905e8d
BLAKE2b-256 c008f26f5583d5fbf330e1267c86e4a0572d1b4afb7a693c2600aa7153f04937

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 923d3ca99a49731f6e283834524e8bcfe9c0bc11b52161f5a3da3957464ea18e
MD5 3dfbf89ca29fdd2ea66e907baf13140e
BLAKE2b-256 0f7c8b1e2517695b7a9ebdc2ce3016b6533d795669c7c01873763911d4ba2ff8

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 21b259f70b04cf8c611805febc962cb79de5c7d08080edf85a07a32202e9df4b
MD5 a11d65c752aed4782d1aef3b55d65c5d
BLAKE2b-256 b4dde7c933d71ccd414cc47c10537a005f9279317a1416eab8c287a610ec582e

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4da2c61461a6349c754f55ae1872e4bb331ba19fca2becac76e7b57e7b4c1997
MD5 f24c8a8a48b1a89798099f926952d7d5
BLAKE2b-256 088b1b6d204df6e6bab14e393761ef5fe22481515ac0829431fa0fbdf61572d9

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: nanoarrow-0.5.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 373.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for nanoarrow-0.5.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 75126de54a5b682f7a9e5719e2c0f12e2ad4207973cb307ca2f7329938f1159f
MD5 2d56d20d3b31958fab7d4d660d7dc498
BLAKE2b-256 31f314890150d1f46242802488627dcd9be246740eabab092fc533f78351e5ee

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3a1a3c45aba5e4c24eb324895d9119ada35cf76e03bd456c24027bebfbe11543
MD5 423e938f6373a4c94d0528087ea09e96
BLAKE2b-256 e387990280d15f292e5d65d7b7e6896a110211ed36ef3895b830d4d863a539c6

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 11342cc9c3c4f03b39af9aa6d8ae760915c89fa5655df02f448e61d56d2d9195
MD5 487c90c4ef0307c9930df4c606e06b71
BLAKE2b-256 4e5c9fd3ee390a8012253758f54d2b6cfb60de48cd3d8ab307ae4131162035bf

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b9eb9525ad7f2caf658476037e839322d6e9b1b24b0120e7890a3cfbdfdfa832
MD5 784bdebfc42aeb128b4debecadc7b70d
BLAKE2b-256 5801ee3ce633ab872e4d5f168ff78ca966ae8d85fffc0e1cb1426c7e0747059f

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3e23a511e3633f952cfe6959bb9e59de1d11be95b1ee3390afa05fef44d9d74
MD5 c51add6c8b6447691d46fd046cfd1d18
BLAKE2b-256 1debc8dd6702d98f5583f7df463780b23d790aee1d56e7b7e69e30c49ed06f33

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6e5aff61ec4158ad2ff3192cd1f745fed3d3c54ffedf8e1c052dd9545596269
MD5 c4244e60031c80e61f6b8295b9a46337
BLAKE2b-256 54dd8d60958d38656d7bd50f23df5ce27e0fca149bf3f67ed00cd9ab31988c97

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 52ee823ae03a1f19e43955bf7006fa6b429d26f953b44035408fed7ad043ce1c
MD5 6b1b77d6c76b28d3b1e0aac1ec50178c
BLAKE2b-256 3badf776fbd4dc2266801d5bd1b9b189a2e794b1819c2e4034ad05bcfd020a14

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a71283cf86075e50ff5b2d0f55fd186bcec5861626fc6dc8fd956921d95c2450
MD5 ef9d70152d620c8d4d94370c533d96ee
BLAKE2b-256 1308953d65d806fea0a4c700256c8f4b5bad19e8f2d15af73361429f60126fa1

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da4be2cfafc96df8cc9d8599d52d22b4d32222da4485409d842c5e845244646c
MD5 f8dddf31583920a2cceb334800f58b1c
BLAKE2b-256 23617c8c2b27a1ec2a490cb1710caaf7974a51bdbd0e15d1228758f43717f2da

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1f567e834e34cac4edcde070529bd0df7e413279c892eb0c14ff0890c12f7a8f
MD5 d57b44842e0812b83ffe42842588233c
BLAKE2b-256 a793e7bf2c541789e848a10169049f6dde98b862f350bee3b54d4e5481a93b34

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: nanoarrow-0.5.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 371.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for nanoarrow-0.5.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e65ed1caaefa404bad804056c1cfbf59e02d366e31930d8d20b1ad3ffb135d1b
MD5 1bb8b584a3f187a69998404589e0caef
BLAKE2b-256 06071a6af69e8ca30e5bc74314aa3c9cc9ad4b6933e69bfd4a710c4a390bed83

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9ebdf46ded3c6d6d18d6fb7f5cd8351e7eb6fb961b82c0a28c41cef828862bad
MD5 a4feb462dba962ab03d91904e0f80b2a
BLAKE2b-256 758a8d8f387e1f8750d211eac991472dc43b09c7e4b4a5270d5acfb5a3ffd87e

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b92cd3eeadf308fff785eaf651b7e9c262ee665a20c067c1e7985a47459bdee9
MD5 dedf88f1ecd0828dd218de02edd2e24f
BLAKE2b-256 b43d63f6ce973a5548a2eac1105ec25a7b187a4da2f5bee52d0ed924e5013afa

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e861c5c4a887033ebe593297af1f919b1aa8d49d10ccbd44f99a9bd5f8c9e4de
MD5 f023c2a9cead7d72cc72ac652fbf4db1
BLAKE2b-256 feccbb70e4db825dbc1b53fc3274624326e49fddb82dbb78ce4787103217050a

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4d6bd0086af453e664dc94749cde09735776712d150c2191e1a1b83944e5564
MD5 ab13d329a0d31fe239c980cb7fe79a24
BLAKE2b-256 769c34793dc3d3d2b07e1e253d8a0e50506ad330dd6848eb93756fca8c7047e0

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8dea48ea3d4e4b613729d97da4ced097ed67c465ac02aa4e11ab06e03b08f341
MD5 36e55b2093df318f32c4c88eb83b0513
BLAKE2b-256 86f1dab1e8b51165a04b856d015eaa3b48ef9dae3fbd37ab55a5ca08df34358c

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2da23d9cc15be4f02a9244e7f9c9e503582a7d1d1513d57704a4718619952846
MD5 4945be30dc44e40a3f53a676793cfbcc
BLAKE2b-256 2ba9003b329641eee835de98db1f0607ed1731ee9513efdb84e29606d12e85f1

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 93b15755028cb31b4a47b70b421dd766d194d4cb08730d58699ab1d5bbbc28ed
MD5 7b34d34267bef012ffe824950ed72436
BLAKE2b-256 4c4ed6dab3a414e5fa95d563931965f1ee66a0c4d8c49a8e916dc34e1e6ad9eb

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ddff31cec43bdb86ad4f96e23ba482683f4c830cb84b4957657f04c0d7b3686
MD5 9c7f71dc47ae3db9305987a118fb7de8
BLAKE2b-256 a9ac4aae22b6158296b9ed94307150501099cbed3e0e2fa0c1e9ccf75f787aa0

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 66421fec7ca5ea585120efdd52dd5adafec70944febe7b3ed647b6526cf0b618
MD5 4e5b48375068c9d7f5a8a61188840de8
BLAKE2b-256 66f44485fdada65f20ef12bd407a8a9a935a3ceae47af83341f10683bac09507

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: nanoarrow-0.5.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 370.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for nanoarrow-0.5.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ed01b39a948ee37fe564436f875b10667d4f6dde537bdca76984b779f0acd5ee
MD5 fffeea068b69c7623ffe8033e6349c57
BLAKE2b-256 5e5270d1a1cbd613a278f948a8648b507e7f078f617bab8585870b24b458f30a

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 33e6df44811e2eeb6307e1e471615199adb07afe3bbec9ef1fb176fffeb6d57b
MD5 b2f5e3c14450d1535f57d842f8121a32
BLAKE2b-256 5ca3b6b6695b02b7332381aa0334e0dbeb887036784787d0f247963092ca74af

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9c7947597ce7c75b0f4adca418b621a6cc158a9891d621dd93d5bada57840ecb
MD5 be79d0fd55db8aad10e6e5ebb03f8315
BLAKE2b-256 177d8eecb068b10646c81b2a9e942ad5cabc04509bfe3706026cf2e3f77db84a

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7b238df26f7915ec72622ecd20fd50b7ebff04bf81b0da367e423e3a6b0883de
MD5 3c55bcbbf3d1f0a9cc4ea106bf5ffcca
BLAKE2b-256 74b077918f3c983d357977a9134184f7dab9ca9dab5806210a9279f4f44c1206

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb461ac07a9f931697e09ea29f9d1f2251bd06a4e241948033b6b03b37c292d6
MD5 9ec7de207a14bbdc252d1e64466a0d53
BLAKE2b-256 7cf03af801cd96bcbf8f8a5b45eb685fdda542cc29652c83574b270c6edbae68

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c3e57a878be0f4ad63d441b7b728cc6cb28e5b47496f65ee23064f72ff626a6
MD5 442c39c4a4a9677a558fb65a989d0e0e
BLAKE2b-256 000bafe49888af55814061cb976a2063d3034c20853413cc2c48c12b6b7e90ff

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f1af8b9663b7fabf8a98f193e61e77f4370d5686cce0f0993479d5181297b61c
MD5 0800e206f4261d7d3494b76d97809d83
BLAKE2b-256 b54396d939388b78cd4f390ab8e8c33bcdafd5c370fde52f8f66897d5dcf16bf

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bf6fe00c1e72b737ea2c3831215456b59fc2ae131690d38628a4da86284a5b73
MD5 e223368a01d82f42a481a9c82e8efa44
BLAKE2b-256 138665a3543ff9094a6a94f66d77522e99eb14a69ac6b842e2ba54df5299e229

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba6f525ff26d17797a21ec8d4e966ba35663b2e18e06dcb67cdef27526670306
MD5 ee932b8b5ef85f9dd665d9cad75c9f12
BLAKE2b-256 5506827acb67ae179e66a1611a8206994f9ce7ee1b7f46ba4d07554a161214cf

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nanoarrow-0.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 419.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for nanoarrow-0.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e6d4d6b37bf780c5d2358def06335568230573983f4e0184ad4fdbb757bca38e
MD5 2a7b712745785fa8f06a840a0ba751ba
BLAKE2b-256 18c165ae7d07906cae402ef20b9b089a4e53cbddd108678240a4353de4fff03d

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: nanoarrow-0.5.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 370.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for nanoarrow-0.5.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fecb5a931c1891f5cf9837370c22c75137ace7449b9b1c280cbeb7f072c2e301
MD5 4964005a31b66e69e5f4df4e53998771
BLAKE2b-256 fbf1b73a3b9ffc6bad45dff3dcb28c1508804a2a16de0dfae696e62097426b21

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fb63edbc4847fa0e5437e36cf9669ed78698d3bd3744c4354231fc72effacf3e
MD5 055da642448f60ee768458fb6261e493
BLAKE2b-256 5f11e52c2a5d97649d6db42ffa5efcd4ec7dc6ccbfd9924804858b14b6c569e5

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c3c8a2d30d8e0d625b04786bf6c92841a9d69a37ec26cc896b46e7c512fc1389
MD5 38a4cfec0b44be09805b91734693d1c3
BLAKE2b-256 66919e266e443c4d5061948bfca975566059c93fbd32239d0c8468b2a5a789b4

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ef0524654f728b32696dc4e3034dfe52fe024d23055657de68d6d96d13c6a0ed
MD5 fdc2bc55317d329b654f1c2e8f7854de
BLAKE2b-256 de9309495307ea4ab008eafa3d4203eefc986a18b1b11a24ae6c9ea8900081cf

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 002367df070294fdedd196a5d1d5e40487e63c1b4462aac5db64559d4cde7ac4
MD5 d8a9055e2de987f75f8d19208900fda0
BLAKE2b-256 d7e334ca727a8266124b113ea3d79494cddfcfe179a4cde3799629601724286c

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c674dae3ff101bd8d26fb62fbde72fe944f1520e6f0b3674bacd7911d21afde8
MD5 92f02eed4a8d55b05753c25c5b1f46ba
BLAKE2b-256 3c4a743e633c7db4e00ee1b4237c9c08334ca2115e73f43c5f1e581e90ca7cd7

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a187cd4e51461ba3275b8a330b54b5a4e0b7071aea446cdbd193e7abb1b2f50f
MD5 238678e967f335db0dfe425e6137be20
BLAKE2b-256 f62affac2ad91b87b7354f69786e7f1847366d49c3e677a888c542ae071da89c

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 be62fd1763e108545b9da700a49f840811bb9c499ebff9c7855309325befa1b6
MD5 3ab1929a82aa725ff4c7c0815016ffc8
BLAKE2b-256 78fa6a4b4223b4b83369bf0241c526d9b016cff89ddb43f93de78231a41d49b9

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6176569fc8c5ba2cd22e198bffb63a93d7b8064d22a3431607245f19737f101b
MD5 d21f8ba51b6035b8f03ec2ad666d8153
BLAKE2b-256 d41720f865d2fb173b53c1957b151e7844b5b1912eba3959094a2f3f8895d6ad

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nanoarrow-0.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 421.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for nanoarrow-0.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ba47116ab837b6566b4e88b9a58eca88b0904a694cd7965432959c2a4c314571
MD5 486e880ddcb47e4aa1cb6482b3291726
BLAKE2b-256 51c02699842379953ffe6b986120d65e43befa1eff20104321af6bbfad152db5

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: nanoarrow-0.5.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 372.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for nanoarrow-0.5.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 cca7354b31a9301781fd354fff442ac03ce03ff4f728f51b101fec6252636af4
MD5 967ef79d9813ef92b9538d44142f7415
BLAKE2b-256 8ade551c4e356fb4bca86864eb6b17c1c640a8fa677fa464e2f118510e4f8089

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 87eb7e97fd488e7d9c9e6de150136fffd0a345569b27a427236934baa751c115
MD5 1c3f49351b2031e585589393d41fab90
BLAKE2b-256 1bfa4f084f0aad015906c80d1d0e5d7ae37d698d35ce649392ae253b60685a89

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 06c241fdc1b409c6ef8e8c1f6a3439171a397f1f545f93bdb154520daf8995e4
MD5 9c16a6cbe9d09a17f41cdc79c93428ae
BLAKE2b-256 506d8725e483630c74d141fa501db28b26d3e520e153faec2b55262c95a8c2c2

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b91025aee78c3c04b4cc220d13a9203d1ad89d70e3674bf356ee3943ea3d7699
MD5 be7f57e599528bcc30bd075de7dfa1ed
BLAKE2b-256 703869d9dfed9bf6a2eed0a77ceadb290eefedab5bf6efac69890eeb43dd3e1a

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 064e2d3cd821bd5a898013c7bd1e6f1075094dae77ff9e6db63e8e254c5278bf
MD5 15b6756a0a496e21e99e82a0671c197b
BLAKE2b-256 74a5b676ab2f0cce2ccff6ff079c8be4f091972f27bd7c622dd71c391982a6d1

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b10d89744f8f896b0bd47abd953c21dfc426a1fab9a68fbc72d57dfa0c04f8c8
MD5 2512d57dd7f62b9fa02ffea2cd1ccdd9
BLAKE2b-256 2f754aee4a8924956f3f0c1430952c9ae5388c010b87650d8ac4673c2a01897d

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4ebdf391fcd82d2a5d868104b46d31f6757e4c8b9abc78dd6031c7bcf765dd39
MD5 af8732d6e87fcdabfcc950bda8ba4469
BLAKE2b-256 d3488e975b916afba1daae81b56dc1ceeddeabfe159b2eee67d54613b0db2aa0

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 485c131398046a9578c37aa75cfa59b20072511cf0a91d0be93373d7c820b95f
MD5 4b228e6a7eef73adcbefedfde45949e2
BLAKE2b-256 2a45ba8cd8eccf86ab11bcf9e5e6800ada80cb2ab2510840ab1aeba65d7fd8ca

See more details on using hashes here.

File details

Details for the file nanoarrow-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7b1cc0f621ae7882b95522178e88e89301e699836985954696cc8e576f19ff13
MD5 4706f40686204c9b6eac07295b3aecd0
BLAKE2b-256 c67e88f1f43def656d8b860e3f877af358f64a220294d62e678de2689182c8b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page