Skip to main content

A minimalistic GUI library for OpenGL, GLES 2, and Metal

Project description

NanoGUI is a minimalistic cross-platform widget library for OpenGL 3+, GLES 2/3, and Metal. It supports automatic layout generation, stateful C++ lambdas callbacks, a variety of useful widget types and Retina-capable rendering on Apple devices thanks to NanoVG by Mikko Mononen. Python bindings of all functionality are provided using nanobind.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nanogui-0.2.0-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

nanogui-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nanogui-0.2.0-cp311-cp311-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

nanogui-0.2.0-cp311-cp311-macosx_10_14_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

nanogui-0.2.0-cp310-cp310-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

nanogui-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nanogui-0.2.0-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

nanogui-0.2.0-cp310-cp310-macosx_10_14_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

nanogui-0.2.0-cp39-cp39-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

nanogui-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nanogui-0.2.0-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

nanogui-0.2.0-cp39-cp39-macosx_10_14_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

nanogui-0.2.0-cp38-cp38-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

nanogui-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nanogui-0.2.0-cp38-cp38-macosx_10_14_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file nanogui-0.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nanogui-0.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for nanogui-0.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8101992544025014c73684adb529d6b65b5ff959cfc7d383ea0b51d67750d8a6
MD5 a130c0a0e0760d6b0425165cd8a60f22
BLAKE2b-256 3d84a23211ab95f6149679a1182b75df16b0513d542b97ea897b83c7e79a6a1a

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanogui-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3f9cea90d97e806566be0932eea47f4da91e6c9ffafed3c48759fa174959f5a
MD5 1abae6805c49697e4e32e42a729c3d7b
BLAKE2b-256 55f27081b1514fc740281478dd8e444575b9d1dce547d47523b3f599f32e87df

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanogui-0.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c3599dcfb8606f857c78b7ab0b3f65c449080611d2cc97e582162cfe97b13d37
MD5 b8f3e6637500827e32f8ac4fc8aacb09
BLAKE2b-256 c5d2552da237b21250c3889eb859519546a9701af9a6c6ac2030ef16e0f00e2c

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for nanogui-0.2.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bd4cac16d2bc7966a9e5dda67f430e311c6f76066d23b18f2eacce5970633224
MD5 c678cf635eaa8b411752da53310ffe11
BLAKE2b-256 8fb76dca4fa358c1daa367f77d0320ee9e67c341046eb6d2e0665ec71bdcb5de

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nanogui-0.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for nanogui-0.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b93d8a969846b8d3cd50cb56e0c464ad42a02f4e2970f178ead5af74745f1723
MD5 a7dc6ba069edefd55bed9655b60c9280
BLAKE2b-256 fc9ccfa78ff518e02a36407c4b6554582afda0187602325043adffba280a5cbc

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanogui-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eadcb00794a9afdf53b39dc37b840269b4e9c42da377def692c9fcfaeca57890
MD5 7714157b665aac6268afa842011d83a8
BLAKE2b-256 ad40f08246c056351c798d7a4dc1506206be5084dcc81245d2d5772842cb20cb

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanogui-0.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ffb43efceba31964cb08b034f77fe3c29efddba7355c79ba7633ebb4488aa28
MD5 3674369a158040c92c536c8cb551aca9
BLAKE2b-256 a795b21511a939ecf4774bdf6f36d9076be8c25fdf0609ccfc6643077667ab89

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for nanogui-0.2.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bf358802141d686557748e8193bdc8f6b714ba5ce1e18d414292261e91842b24
MD5 a25f1b7d792be5b3a5bf2ffec8664ef0
BLAKE2b-256 fdd21f56bae428a527c33356ad0690aeb906cd3c2b68272f0b9d1c60cb15208d

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nanogui-0.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for nanogui-0.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5296dd52d246b5d74ba2ee1309919a4877e816837c233082f9162ef0f5b22283
MD5 b5a9b8568657cc8473340432ece1010d
BLAKE2b-256 8a25b2a684089bf2443fb7528178d0b947dc188bd7016852701db3f273246d12

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanogui-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 444eab1dde00aaabca55009a875b45532d5384ba03c6c3a4050045e159928f1f
MD5 4bfccf059d7920667525e5706a0fc6de
BLAKE2b-256 e25718a087088267cb8a8b9008b47e77857f1f6e7595e73f0cb1398b129aef7d

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanogui-0.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9262d6527cb5c0f5eb70b2c52842ba44c046aea9e201da4c0da9ecb24d0f944c
MD5 7dbf55de332c31deb1197bd29f6266bd
BLAKE2b-256 1fa98e58ea9bc87e73a471beea62777c598eee9c859d86398b1337e2d2bbcb88

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for nanogui-0.2.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4dbfbb20092fa4947f704b344e56fc52db587ac4afb3372d01ecac18bab14c8a
MD5 872b55cc2650f1aa3294022ffb8942fc
BLAKE2b-256 e4eb908d786df5f5ff64eab1c073e219a9ea10c832011a5fccf5e161fba80c13

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nanogui-0.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for nanogui-0.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 576204fe19497d59a21ea8836c8845ec9cb2680a84bfa108f1a32b7ca972c807
MD5 5e5dd349fab59e92115e399a71113345
BLAKE2b-256 538e44683707849d559876c732660f0d7107eb3d586f5811569a8d5bd5bb962e

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanogui-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1410eda58f0208b9da587fe0b95aafa45abcaa3063e3841841f5b62a0e9211cb
MD5 ab45c93cf4a5d3e2fa11b227ebcb8236
BLAKE2b-256 2e54ec1d8c73f22df4b1b8e6455adac0c40578fab050107554211ebedac3a7f3

See more details on using hashes here.

File details

Details for the file nanogui-0.2.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for nanogui-0.2.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2849a6c649f1c4f416536a65d83be3206972ade84681690b3409e89656bf0a92
MD5 f237a09912a49d9c9641d113758cfeab
BLAKE2b-256 6df1dfcb61cc0e635083baf39688dba391456c1b4aed86daeadbd5745aa49847

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page