Skip to main content

Nanoscopy Python library (NanoPyx, the successor to NanoJ) - focused on light microscopy and super-resolution imaging

Project description

NanoPyx

PyPI Python Version Downloads Docs License Tests Coverage Contributors GitHub stars GitHub forks DOI

Nanoscopy Python library (NanoPyx, the successor to NanoJ) - focused on light microscopy and super-resolution imaging


What is the NanoPyx 🔬 Library?

NanoPyx is a library specialized in the analysis of light microscopy and super-resolution data. It is a successor to NanoJ, which is a Java library for the analysis of super-resolution microscopy data.

NanoPyx focuses on performance, by heavily exploiting cython aided multiprocessing and simplicity. It implements methods for the bioimage analysis field, with a special emphasis on those developed by the Henriques Laboratory. It will be distributed as a Python Library and also as Codeless Jupyter Notebooks, that can be run locally or on Google Colab, and as a napari plugin.

You can read more about NanoPyx in our preprint.

Currently it implements the following approaches:

  • A reimplementation of the NanoJ image registration, SRRF and Super Resolution metrics
  • eSRRF
  • Non-local means denoising
  • More to come soon™

if you found this work useful, please cite: preprint and DOI

Short Video Tutorials

What is NanoPyx? How to use NanoPyx in Google Colab?

More specific tutorials here!

Codeless jupyter notebooks available:

Category Method Last test Notebook Colab Link
Denoising Non-local Means ✅ by ADB (25/01/24) Jupyter Notebook Open in Colab
Registration Channel Registration ✅ by BMS (18/04/24) Jupyter Notebook Open in Colab
Registration Drift Correction ✅ by BMS (18/04/24) Jupyter Notebook Open in Colab
Quality Control Image fidelity and resolution metrics ✅ by ADB (25/01/24) Jupyter Notebook Open in Colab
Super-resolution SRRF ✅ by ADB (25/01/24) Jupyter Notebook Open in Colab
Super-resolution eSRRF ✅ by BMS (25/01/24) Jupyter Notebook Open in Colab
Tutorial Notebook with Example Dataset ✅ by ADB (25/01/24) Jupyter Notebook Open In Colab

napari plugin

NanoPyx is also available as a napari plugin, which can be installed via pip:

pip install napari-nanopyx

Installation

NanoPyx is compatible and tested with Python 3.9, 3.10, 3.11 in MacOS, Windows and Linux. Installation time depends on your hardware and internet connection, but should take around 5 minutes.

You can install NanoPyx via pip:

pip install nanopyx

If you want to install with support for Jupyter notebooks:

pip install nanopyx[jupyter]

or if you want to install with all optional dependencies:

pip install nanopyx[all]

if you want access to the cupy implementation of 2D convolution you need to install the package version corresponding to your local CUDA installation. Please check the official documentation of cupy for further details. As an example if you wanted to install cupy for CUDA v12.X

pip install cupy-cuda12x

To install latest development version:

pip install git+https://github.com/HenriquesLab/NanoPyx.git

Notes for Mac users

If you wish to compile the NanoPyx library from source, you will need to install the following dependencies:

  • Homebrew from https://brew.sh/
  • gcc, llvm and libomp from Homebrew through the command:
brew install gcc llvm libomp

Run in jupyterlab within a docker container

docker run --name nanopyx1 -p 8888:8888 henriqueslab/nanopyx:latest

Usage

Depending on your preferences and coding proficiency you might be using NanoPyx differently.

  • If you are using Jupyter Notebooks or Google Colab notebooks check out our video tutorial here and here
  • If you are using our napari plugin check out the official napari tutorial and stay tuned for more!
  • If you prefer to use the Python library and take full advantage of the Liquid Engine flexibility check out our wiki, our cookiecutter and our video tutorials here and here.
  • Liquid engine template files for a simple example:
    • Simple Liquid Engine templates here and here
    • Fully fledged Liquid Engine templates here and here

Wiki

If you want more in depth instructions on how to use nanopyx and its Liquid Engine please refer to our wiki. In the wiki you can find step by step tutorials describing how each methods works and how to implement your own Liquid Engine methods.

Contributing

Contributions are very welcome. Please read our Contribution Guidelines to know how to proceed.

License

Distributed under the terms of the CC-By v4.0 license, "NanoPyx" is free and open source software

Issues

If you encounter any problems, please file an issue along with a detailed description.

Development at a glance

Repography logo / Structure

Structure

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nanopyx-0.6.1.tar.gz (8.3 MB view details)

Uploaded Source

Built Distributions

nanopyx-0.6.1-cp312-cp312-win_amd64.whl (12.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

nanopyx-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nanopyx-0.6.1-cp312-cp312-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

nanopyx-0.6.1-cp312-cp312-macosx_10_13_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

nanopyx-0.6.1-cp311-cp311-win_amd64.whl (12.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

nanopyx-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nanopyx-0.6.1-cp311-cp311-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

nanopyx-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nanopyx-0.6.1-cp310-cp310-win_amd64.whl (12.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

nanopyx-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nanopyx-0.6.1-cp310-cp310-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

nanopyx-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nanopyx-0.6.1-cp39-cp39-win_amd64.whl (12.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

nanopyx-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nanopyx-0.6.1-cp39-cp39-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

nanopyx-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file nanopyx-0.6.1.tar.gz.

File metadata

  • Download URL: nanopyx-0.6.1.tar.gz
  • Upload date:
  • Size: 8.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for nanopyx-0.6.1.tar.gz
Algorithm Hash digest
SHA256 d52e46b89387e969176700b1568ee202df032759c63d33608defc1fd7bc8f335
MD5 bff2cffd7c4b7f6816f91d46d45fa905
BLAKE2b-256 63ab3c7c184db8bec592d65acc93019022a81c15e2aab1cf9d94880336214e00

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: nanopyx-0.6.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for nanopyx-0.6.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a1723efdde2486c399232830c9f7cbb13edfce6697d2ecc061dfc9327086a64d
MD5 2fa26a31109d961ce2889785b0f3d6ca
BLAKE2b-256 a2460aeb4795fd3b158b4617dac0c2e1d940de4c16cdeb9722b815009eca4534

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0965b8e138f395451364b32fd9eea1fcd38763268071bfc65572a0b5735529a8
MD5 cd0b35f0ffeac50f611cba3fb00dfaf2
BLAKE2b-256 843dd2fcc1b2cb328a6b07805e5adc051d3c5b5f695648a5b3d378c2697cdb23

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 705369d61f0fb8d548dcf40d829627e45884c4a9d9759097eb89f1e3d92d8c33
MD5 d3fc9457ee2527983a625245ddfdee25
BLAKE2b-256 8520ab35ef6f8858ea8178f43eb2e921721c10d3a7f2f3e230717b9559c43440

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f820a032f5a5c97f42a6a1bae3d9595a7e75e8ca9490b2587995698c6443993e
MD5 61934d0d03b4cc0c1c8c4f2458d9dc85
BLAKE2b-256 04f6ded20f057c263abc53030deb580225a0b637ffc2833b3e024284cef6f9a6

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nanopyx-0.6.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for nanopyx-0.6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d9b78400376583985d09519984da38a9f21d9918d64fcd5c67cd338b450caf99
MD5 39a8d3fd312982f1b1e942dc8a25e144
BLAKE2b-256 291647150f238ac684e33311531e3c33a768fdd699327c8516959baaa609eaab

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3fd93b9f7a5d9823f004cac72ed12d04829d38b49615583030230f8039fcc524
MD5 c2032dbc306187407f84c5c2c1e03718
BLAKE2b-256 80090d40fb7f92472b10bccb8995a4c6359bc469966541df055212e8e846cc15

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 87e8df666f2ed77f2be08001562e85ec96fe337c4766b2e69d7196f58520334a
MD5 7fa3d9e20645277d544ffacf579a3fa9
BLAKE2b-256 f937a67247127dd18c67540e19b12a1901fca711495fa4ebdba19e57d928104d

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9023526637c49735f004e520dd4a143d11e4a964ea6e9df701faa31fb20eeb73
MD5 e45b00508044eb0f7200163bf98e6ef0
BLAKE2b-256 d11d4675a29f059a8c9398cfbd49c8e151ebdddb412a0f5c19e63db9cc2c1ee0

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nanopyx-0.6.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for nanopyx-0.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5b17a01b85cbd96ed95900d832078ba97cec07a124bf2d02d6bfaf048af93535
MD5 1bec55cdf571b4ee4af2611faa3c17e5
BLAKE2b-256 765af2e9b5f4cb47f192b95ef88cf78d4fe3107f642b6efe8fa604940b4a7f1c

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 301dce5d025f4fd6008444115471f87203d698d061f1d9b1f3c9c3370accd456
MD5 c1fe968bb5c9d1cc780dcce7a8e4ac2e
BLAKE2b-256 3d3646207fa96a4fcf6dd558d1b42901307fba889749f5c4215506a008be1a5f

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11a34611019d9e04b36fdc095627d179dff05834fcd5a201ce947f2ff06c4a19
MD5 7d92cc18127cdf0b4337cb24e76acb9e
BLAKE2b-256 2b86e35ff8a8a587a6ebc2d0ff87c1e439cb174d2073c8b043736adf1ccb2f30

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5da269bc25c775a525381f4af285936bafe7455896de6aa0f4bf42e5e8b0ed1
MD5 e562fd275471c546fa11baf5a13ef2f3
BLAKE2b-256 34469be58f1939e91b39600b55e3782c59fc60002604f8004f85ebeb7116a3c7

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nanopyx-0.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for nanopyx-0.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8cdee791c3af262dc4d38cc7d7f1d8ef3dacb8045f5ca35d69e2e2b34dc164b8
MD5 dacd2dd5430d8b55136111efb7777dd3
BLAKE2b-256 d40eb77ba4a9a59f9ec1908a8fdf85c02a6f3d1fe950483977fd55330817a7b6

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0f4195e4ef2e64815994a9447f5245dabcccb74c50a3c6e42b4497ccc546b09
MD5 821ded6fbc4d277606414ed7fb290a42
BLAKE2b-256 5e9e284846d532a68094878e87623e94dbfc723edbda43232723d70b86cf8695

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de503208ced818420e6e6837d24164d7b5323afa484a730feb716f82eca1e62e
MD5 8108fc2024c1f5f464566cfba5b7b6c4
BLAKE2b-256 7477e87f7fbe392e0e73352f4361cb24d79a88cb19deeaca81a153c540d2514e

See more details on using hashes here.

File details

Details for the file nanopyx-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanopyx-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fd3f65ed533d1461612fae471c16542f040c1e16a26f98364ab8b50cb80fc99e
MD5 fe53199c45adea2acf630579f29530b7
BLAKE2b-256 0f704c697ad6b5cd1954f61061fedb05bb4cf88da3a34e4f88c3fd99ecd09d59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page