Skip to main content

Dask empowered multidim, rigid registration for volumetric measurements

Project description

napari-fast4dreg

License BSD-3 PyPI Python Version tests codecov napari hub

Dask empowered multi-dimensional, registration for volumetric measurements. This is a python port of the original Fast4DReg Fiji Plugin, with added rotation correction in lateral direction and support for out of memory processing. The original paper can be found here: https://journals.biologists.com/jcs/article/136/4/jcs260728/287682/Fast4DReg-fast-registration-of-4D-microscopy


Installation

You can install napari-fast4dreg via pip:

pip install napari-fast4dreg

Usage

It's easy!

  1. Just drag and drop your image, or the test image from this repository, into napari and open it normally. Don't worry if your file is big, napari already internally uses dask to open even the biggest images (although it might hurt the performance).
  2. Open the napari-fast4dreg plugin from the plugin menu.
  3. In the image row, make sure your image is selected in the image drop down menu.
  4. In the axes row, choose the structure of your input image. If your axis orientation is correct in ImageJ choose the standard TZCYX (ImageJ) orientation. If you are using python to process the image you probabbly are using the alternatively availabe CTZYX orientation. In this case just select CTZYX in the drop down menu instead.
  5. Select the reference channel used for the registration. The drift will be determined for this reference channel and applied to all other channels. Counting begins by 0. In case for the test image we select the nuclear signal in channel 1.
  6. Select the corrections that you want to apply on your image. Note that the crop function reduces only in xy, according to the previously determined drift. (e.g. drift = -5 in x --> drop 5 pixels from the left hand side of the registered stack.)
  7. Wait for output (this may take a while, so go and get a coffe or tea).
  8. Enjoy your registered image.

Example Outcome

The output will consist of the following (if chosen):

  • registered.tif: The registered file, output of this image registration pipeline.
  • tmp_data: This folder was used for temporary data saving and stores at the end the registered image in a chunked manner (can be deleted or dragged into napari for a greater data versatility)
  • drifts.csv: csv table, home to the drift of all corrected variables, if you prefer your own plotting style, here is where you find the pure drift table.
  • XY-Drift.svg: Vector based graphic, visualising the drift in lateral direction. The svg format can be opened by your web browser or directly imported to powerpoint. Key advantage of .svg instead of .png: You can resize any way you like without loss of image quality.
  • Z-Drift.svg: Vector based graphic, visualising the drift in axial direction.
  • Rotation-Drift.svg: Showing rotation correction of the image in lateral direction.

3D_MIP_registration 3D_plane XY-Drift Z-Drift Rotation-Drift

Contributing

Contributions are very welcome. Just send me an E-mail: marcel.issler@kuleuven.be or directly submit a pull request.

Credit

This napari plugin was generated with Cookiecutter using @napari's cookiecutter-napari-plugin template.

License

Distributed under the terms of the BSD-3 license, "napari-fast4dreg" is free and open source software

Issues

If you encounter any problems, please [file an issue] along with a detailed description.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

napari_fast4dreg-0.0.1.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

napari_fast4dreg-0.0.1-py3-none-any.whl (11.9 kB view details)

Uploaded Python 3

File details

Details for the file napari_fast4dreg-0.0.1.tar.gz.

File metadata

  • Download URL: napari_fast4dreg-0.0.1.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for napari_fast4dreg-0.0.1.tar.gz
Algorithm Hash digest
SHA256 943928c43bdcc19223abb362615de85add095befb10ea28b74dfd7735f3fbc58
MD5 9878be7de98be046696f5b7a3bb5b9fd
BLAKE2b-256 64aee194a359264ea0186ee28b0499f9729a1ba8d4d16c352ec51099151ab14d

See more details on using hashes here.

File details

Details for the file napari_fast4dreg-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for napari_fast4dreg-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b6b325da1c0fb2afd1cde4020206df1330ebb13e651a465f7922d46cf9a46532
MD5 86508b9d3b429f0583ad2b9cd374fd3a
BLAKE2b-256 81739eaf7818a4f0c5b312004f7a6f6cbde0f4696626ebe2c1da1fa983f019da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page