Skip to main content

Process images using SimpleITK in napari

Project description

napari-simpleitk-image-processing (n-SimpleITK)

License PyPI Python Version tests codecov napari hub

Process images using SimpleITK in napari

Usage

Filters of this napari plugin can be found in the Tools > Filtering menu. Segmentation algorithms and tools for post-processing segmented (binary or label) images can be found in the Tools > Segmentation menu.

Gaussian blur

Applies a Gaussian blur to an image. This might be useful for denoising, e.g. before applying the Threshold-Otsu method.

img.png

Median filter

Applies a median filter to an image. Compared to the Gaussian blur this method preserves edges in the image better. It also performs slower.

img.png

Threshold Otsu

Binarizes an image using Otsu's method.

img.png

Connected Component Labeling

Takes a binary image and labels all objects with individual numbers to produce a label image.

img.png

Signed Maurer distance map

A distance map (more precise: Signed Maurer Distance Map) can be useful for visualizing distances within binary images between black/white borders. Positive values in this image correspond to a white (value=1) pixel's distance to the next black pixel. Black pixel's (value=0) distance to the next white pixel are represented in this map with negative values.

img.png

Binary fill holes

Fills holes in a binary image.

img.png

Touching objects labeling

Starting from a binary image, touching objects can be splits into multiple regions, similar to the Watershed segmentation in ImageJ.

img.png

Morphological Watershed

The morhological watershed allows to segment images showing membranes. Before segmentation, a filter such as the Gaussian blur or a median filter should be used to eliminate noise. It also makes sense to increase the thickness of membranes using a maximum filter. See this notebook for details.

img.png

Watershed-Otsu-Labeling

This algorithm uses Otsu's thresholding method in combination with Gaussian blur and the Watershed-algorithm approach to label bright objects such as nuclei in an intensity image. The alogrithm has two sigma parameters and a level parameter which allow you to fine-tune where objects should be cut (spot_sigma) and how smooth outlines should be (outline_sigma). The watershed_level parameter determines how deep an intensity valley between two maxima has to be to differentiate the two maxima. This implementation is similar to Voronoi-Otsu-Labeling in clesperanto.

img.png


This napari plugin was generated with Cookiecutter using @napari's cookiecutter-napari-plugin template.

Installation

You can install napari-simpleitk-image-processing via pip:

pip install napari-simpleitk-image-processing

To install latest development version :

pip install git+https://github.com/haesleinhuepf/napari-simpleitk-image-processing.git

Contributing

Contributions are very welcome. There are many useful algorithms available in SimpleITK. If you want another one available here in this napari plugin, don't hesitate to send a pull-request. This repository just holds wrappers for SimpleITK-functions, see this file for how those wrappers can be written.

License

Distributed under the terms of the BSD-3 license, "napari-simpleitk-image-processing" is free and open source software

Issues

If you encounter any problems, please file an issue along with a detailed description.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file napari-simpleitk-image-processing-0.1.0.tar.gz.

File metadata

  • Download URL: napari-simpleitk-image-processing-0.1.0.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for napari-simpleitk-image-processing-0.1.0.tar.gz
Algorithm Hash digest
SHA256 9ef7ba049a3d715a36089d23b1d0cc06b382da0746397da6a410e70184d9268c
MD5 1f0d791698d1c37b4fe8a29ab50923b6
BLAKE2b-256 f15e32b165ec8f94e56239b7fd1a473068b8574ce0ba60f844cbccbbc6fb8c6a

See more details on using hashes here.

File details

Details for the file napari_simpleitk_image_processing-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: napari_simpleitk_image_processing-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 9.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for napari_simpleitk_image_processing-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 587666cc4e3cae4eda9ae4ef5e098333d2579ed51ad711fe6178b697f762a396
MD5 3f604eec495d117b93aa080201d8238b
BLAKE2b-256 0f9ba47d58005dce949ca5f45971a2ead466e194f8b08967c2958e1bfe1d7d7f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page