Skip to main content

A classification plugin for the ROIs of a segmentation mask.

Project description

# napari_svetlana

License PyPI Python Version tests codecov napari hub Documentation

The aim of this plugin is to classify the output of a segmentation algorithm. The inputs are :

  • A folder of raw images
  • Their segmentation masks where each ROI has its own label.

Svetlana can process 2D, 3D and multichannel image. If you want to use it to work on cell images, we strongly recommend the use of Cellpose for the segmentation part, as it provides excellent quality results and a standard output format accepted by Svetlana (labels masks).

If you use this plugin please cite the paper:

Cazorla, C., Weiss, P., & Morin, R. (2024). Svetlana: a Supervised Segmentation Classifier for Napari.

@article{cazorla2024svetlana,
  title={Svetlana a supervised segmentation classifier for Napari},
  author={Cazorla, Cl{\'e}ment and Morin, Renaud and Weiss, Pierre},
  journal={Scientific Reports},
  volume={14},
  number={1},
  pages={11604},
  year={2024},
  publisher={Nature Publishing Group UK London}
}


This napari plugin was generated with Cookiecutter using @napari's cookiecutter-napari-plugin template.

Installation

First install Napari in a Python 3.9 Conda environment following these instructions :

conda create -n svetlana_env python=3.9
conda activate svetlana_env
conda install pip
python -m pip install "napari[all]"==0.4.17

Then, you can install napari_svetlana via pip, or directly from the Napari plugin manager (see Napari documentation):

pip install napari_svetlana

WARNING:

If you have a Cuda compatible GPU on your computer, some computations may be accelerated using Cupy. Unfortunately, Cupy needs Cudatoolkit to be installed. This library can only be installed via Conda while the plugin is a pip plugin, so it must be installed manually for the moment:

conda install cudatoolkit=10.2 

Also note that the library (Cucim) that we use to improve these performances, computing morphological operations on GPU is unfortunately only available for Linux systems. Hence, if you are a Windows user, this installation is not necessary.

Tutorial

Many advanced features are available in Svetlana, such as data augmentation or contextual information reduction, to optimize the performance of your classifier. Thus, we strongly encourage you to check our Youtube tutorial and our documentation. A button called TRY ON DEMO IMAGE is available in the annotation plugin and enables you to apply the YouTube tutorial to the same test images to learn how to use the plugin. Feel free to try it to test all the features that Svetlana offers.

Similar Napari plugins

Joel Luethi developed a similar method for objects classification called napari feature classifier. Also, apoc by Robert Haase is available in Napari for pixels and objects classification.

Contributing

Contributions are very welcome.

License

Distributed under the terms of the BSD-3 license, "napari_svetlana" is free and open source software

Acknowledgements

The method was developed by Clément Cazorla, Renaud Morin and Pierre Weiss. And the plugin was written by Clément Cazorla. The project is co-funded by Imactiv-3D and CNRS.

Issues

If you encounter any problems, please file an issue along with a detailed description.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

napari_svetlana-1.0.5.tar.gz (97.2 kB view details)

Uploaded Source

Built Distribution

napari_svetlana-1.0.5-py3-none-any.whl (121.7 kB view details)

Uploaded Python 3

File details

Details for the file napari_svetlana-1.0.5.tar.gz.

File metadata

  • Download URL: napari_svetlana-1.0.5.tar.gz
  • Upload date:
  • Size: 97.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for napari_svetlana-1.0.5.tar.gz
Algorithm Hash digest
SHA256 8d7f15a2a518d73871afe41a72e610354775fe45bfcd701f7ebd51f58c1556cf
MD5 1d24f6794637d729ea8d096b76e6955b
BLAKE2b-256 649a4b2c642f3b9e8783ba948ab9bda5e7df81a9b1b58776236c8d80f484e922

See more details on using hashes here.

File details

Details for the file napari_svetlana-1.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for napari_svetlana-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 5119f5cdbc9cf0d770446b697229e3c82dd833d3df186f2993faaf12a949de82
MD5 44aaf8b53186d9fef10e278a68ba0dd8
BLAKE2b-256 c58fe7bd8532cd81d0074eb9819d656c56bf32d846d86e9c629bcb922a89924e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page