Skip to main content

meta plugin to ease processing timelapse image data

Project description

napari-timelapse-processor

License BSD-3 PyPI Python Version tests codecov napari hub

meta plugin to ease processing timelapse image data

API

This plugin exposes two principal funcionalities:

TimelapseConverter

The TimelapseConverter class allows you to stack or unstack any of the supported napari layers from 4D data into a list of 3D layers or vice versa. Currently supported layers are:

  • napari.layers.Image
  • napari.layers.Labels
  • napari.layers.Points
  • napari.layers.Vectors
  • napari.layers.Surface

napari.layers.Tracks are intrinsically 4D and thus not supported.

Unstacking example usage:

from napari_timelapse_processor import TimelapseConverter
import numpy as np

image_4d = np.random.rand(10, 32, 32, 32)  # 10 timepoints of 32x32x32 data
converter = TimelapseConverter()
list_of_images = converter.unstack(image_4d, layertype='napari.types.ImageData')

Stacking example usage:

from napari_timelapse_processor import TimelapseConverter
import numpy as np

random_points = [np.random.rand(10, 3)  for _ in range(10)]  # 10 timepoints of 10 random 3D points
converter = TimelapseConverter()

# stack the points into a single 4D layer
stacked_points = converter.stack(random_points, layertype='napari.types.PointsData')

The TimeLapseConverter class also supports (un)stacking the napari.layers.Layer type (and its above-listed subclasses). Importantly, features that are associated with the respective layer are also (un)stacked.

Layer example usage

from napari_timelapse_processor import TimelapseConverter
import numpy as np
from napari.layers import Points
import pandas as pd

random_points = [np.random.rand(10, 3)  for _ in range(10)]  # 10 timepoints of 10 random 3D points
random_features = [pd.DataFrame(np.random.rand(10)) for _ in range(10)]  # 10 timepoints of 10 random feature values

# create a list of 10 Points layers
points = [Points(random_points[i], properties=random_features[i]) for i in range(10)]

converter = TimelapseConverter()
stacked_points = converter.stack(points, layertype='napari.layers.Points')

frame_by_frame

The frame-by-frame functionality provides a decorator that will inspect the decorated function for TimelapseConverter-compatible arguments and, if a 4D value is passed as argument, will automatically (un)stack the data before and after the function call. This allows for a more intuitive API when working with timelapse data. Currently supported type annotations are:

  • napari.types.ImageData
  • napari.types.LabelsData
  • napari.types.PointsData
  • napari.types.VectorsData
  • napari.types.SurfaceData
  • napari.layers.Layer
  • napari.layers.Image
  • napari.layers.Labels
  • napari.layers.Points
  • napari.layers.Vectors
  • napari.layers.Surface

Additionally, the frame_by_frame supports parallelization with dask.distributed. To use it, simply pass the use_dask=True argument to the decorated function, even if the function itself does not require this argument. The decorater will then automatically parallelize the function call over the time-axis and remove the use_dask argument when calling the function.

Example interactive code usage: If you want to use the frame_by_frame functionality in, say, a Jupyter notebook, use it like this:

from napari_timelapse_processor import frame_by_frame
import numpy as np

def my_function(image: 'napari.types.ImageData') -> 'napari.types.ImageData':
    return 2 * image

image_4d = np.random.rand(10, 32, 32, 32)  # 10 timepoints of 32x32x32 data

image_4d_processed = frame_by_frame(my_function)(image_4d)  # without dask
image_4d_processed = frame_by_frame(my_function)(image_4d, use_dask=True)  # with dask

Example napari code If you want to use the frame_by_frame functionality in a napari plugin, use it like this:

from napari_timelapse_processor import frame_by_frame

@frame_by_frame
def my_function(image: 'napari.types.ImageData') -> 'napari.types.ImageData':
    return 2 * image

Hint: The frame_by_frame functionality runs under the assumption that input napari-data (e.g., an Image, a Surface, Points, etc) are always arguments and any other parameters are always keyword arguments. If this is not the case, the decorator will not work as intended.

# This works
frame_by_frame(my_function)(image_4d, some_parameter=2, use_dask=True)

# This does not work
frame_by_frame(my_function)(image=image_4d, some_parameter=2, use_dask=True)

This napari plugin was generated with Cookiecutter using @napari's cookiecutter-napari-plugin template.

Installation

You can install napari-timelapse-processor via pip:

pip install napari-timelapse-processor

Contributing

Contributions are very welcome. Tests can be run with tox, please ensure the coverage at least stays the same before you submit a pull request.

License

Distributed under the terms of the BSD-3 license, "napari-timelapse-processor" is free and open source software

Issues

If you encounter any problems, please [file an issue] along with a detailed description.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

napari_timelapse_processor-0.0.1.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

napari_timelapse_processor-0.0.1-py3-none-any.whl (14.5 kB view details)

Uploaded Python 3

File details

Details for the file napari_timelapse_processor-0.0.1.tar.gz.

File metadata

File hashes

Hashes for napari_timelapse_processor-0.0.1.tar.gz
Algorithm Hash digest
SHA256 32e425ffb28271bec2af79863a1f77d85ed085d1a44839fdd43a26233411ea86
MD5 b46591c4b32b12826efd085c4a5d06b8
BLAKE2b-256 742b29faab7e612f2f7d724c6a8a9ef920092086655a053c76f9ad7a1ff2d841

See more details on using hashes here.

File details

Details for the file napari_timelapse_processor-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for napari_timelapse_processor-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 42e4912e7c09e5e871432e2c2ca0d9f8e51be78051cd53db4bd9eb812cfbb35d
MD5 0d7410a43d8d5d3dd1e8079f20a28880
BLAKE2b-256 0c05de97a66333feeb51784821cff6edf6b68ad73c411ad8366080e426b44f62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page