nara provides AI-driven real-time information retrieval,all in one sytanx of diffrent models, chatbot interactions, temporary email creation, random data generation, caching, JSON manipulation, async task handling, and structured threading.
Project description
nara: Your All-in-One AI and Utility Library
nara
is a powerful Python library that provides a comprehensive suite of tools for AI-driven tasks, including real-time information retrieval, chatbot interactions, and code generation. It also offers a rich set of utility functions for tasks like temporary email creation, random data generation, caching, JSON manipulation, asynchronous task handling, and structured threading. nara
simplifies complex tasks, boosts productivity, and streamlines your workflow.
Installation
Install nara
using pip:
pip install nara
Features
AI-Powered Features
-
Code Generation:
CreateFunc()
: This decorator dynamically generates the implementation of a Python function based on a docstring or placeholder function definition. This feature leverages the power of large language models (LLMs) to automate code creation.from nara import CreateFunc @CreateFunc() def calculate_area(length: int, width: int) -> int: '''Calculate the area of a rectangle.''' # ... (This function body will be replaced by generated code)
CreateTemplate()
: Generates entire Python templates (e.g., Flask apps, Machine Learning models) from high-level descriptions. This feature is ideal for quickly scaffolding projects and generating boilerplate code.from nara import CreateTemplate CreateTemplate("Create a Flask template with a route that returns 'Hello, World!'")
-
Large Language Model (LLM) Interaction:
nara.llm
: This module provides a unified interface for interacting with various LLMs, including Groq, OpenAI, Cohere, Sambanova, Together, and Ollama. You can easily switch between different models and customize parameters like temperature and max tokens. Supports both synchronous and streaming responses.from nara.llm._groq import Groq, LLAMA_32_90B_TEXT_PREVIEW llm = Groq(LLAMA_32_90B_TEXT_PREVIEW) # Initialize the LLM response = llm.run("Translate 'Hello, World!' to Spanish.") print(response) # Output: Hola, Mundo!
For more advanced use, see the streaming example in the Usage section.
-
Prompt Engineering:
nara.extra.prompt
: Provides tools for constructing and managing prompts for LLMs, including support for different roles (system, user, assistant), text, images, and function calls.from nara.extra.prompt import Prompt, Role, Text prompt = Prompt(role=Role.user, template=[Text("What is the capital of France?")]) print(prompt.prompt) # Output: What is the capital of France?
Utility Features
-
Temporary Email:
-
mailOtp()
,onlyMail()
,mailUrl()
: Create temporary email addresses for receiving OTPs or URLs, useful for testing and automation. (Powered bymailtm
andtemp-mail.io
).from nara.extra.temp_mail import mailOtp email_generator = mailOtp(OtpLength=6, Printable=True, Timeout=60) email_address = next(email_generator) # Get the temporary email address print(f"Your temporary email: {email_address}") otp = next(email_generator) # Wait for the OTP print(f"Received OTP: {otp}")
-
-
Random Data Generation:
-
RandomDataGenerator
: Easily generate realistic fake data for various purposes, such as testing, populating databases, and creating mock data. Includes names, addresses, usernames, passwords, and more. (Powered byfaker
).from nara.extra.fake import RandomDataGenerator generator = RandomDataGenerator() name = generator.name() address = generator.address() print(f"Name: {name}, Address: {address}")
-
-
Caching:
-
CacheManager
: Simplifies caching function results to disk, improving performance by avoiding redundant computations.from nara.extra.extended_json import CacheManager cache_manager = CacheManager("my_cache.json") @cache_manager.cache def expensive_function(arg1, arg2): # ... complex and time-consuming computation ... return result # Subsequent calls with the same arguments will retrieve the cached result result = expensive_function(1, 2)
-
-
JSON Manipulation:
-
loadJson(FileName="Json.json", PickRandom=None)
: Loads JSON data from a file. IfPickRandom
is an integer, it returns a dictionary or list containing that many randomly selected items from the JSON data.from nara.extra.extended_json import loadJson data = loadJson("data.json") # Load all data random_data = loadJson("data.json", PickRandom=2) # Load 2 random items
Error Handling: Raises
FileNotFoundError
if the file doesn't exist andValueError
for invalid JSON or ifPickRandom
exceeds the data length. -
jsonList(FileName="JsonList.json", **kwargs)
: Appends key-value pairs (provided as keyword arguments) as a new dictionary entry to a JSON list. Creates a new list if the file doesn't exist or handles invalid data.from nara.extra.extended_json import jsonList jsonList(FileName="my_list.json", name="Alice", age=30) jsonList(FileName="my_list.json", name="Bob", age=25)
Error Handling: Displays warnings for non-existent files, empty files, or files not containing a list. Raises
ValueError
if the JSON file is empty or does not contain a list. -
jsonDict(Key, Value, FileName="JsonDict.json")
: Updates or adds a singleKey
-Value
pair to a JSON dictionary stored in a file. Creates a new dictionary if the file doesn't exist.from nara.extra.extended_json import jsonDict jsonDict("name", "Charlie", FileName="my_dict.json") jsonDict("age", 35, FileName="my_dict.json")
Error Handling: Displays warnings for similar file errors as
jsonList
. RaisesValueError
if the JSON file is empty or does not contain a dictionary.
-
-
Asynchronous Task Handling:
asyncThreadedTask(thread_count=1, *threading_args, **threading_kwargs)
: Executes an asynchronous function in a separate thread. Useful for running async operations within synchronous code or managing blocking I/O. This example demonstrates the usage with and without parameters:
import asyncio from nara import asyncThreadedTask @asyncThreadedTask async def async_function(): print("Async function started") await asyncio.sleep(2) # Simulate some async operation print("Async function finished") @asyncThreadedTask(2) # Use two threads async def async_function_2(): print("Async function 2 started") await asyncio.sleep(2) print("Async function 2 finished") async def main(): await async_function() await async_function_2() asyncio.run(main())
runMultipleTimes(count=1)
: Runs an asynchronous function multiple times concurrently usingasyncio.gather
.import asyncio from nara.extra.tools import runMultipleTimes @runMultipleTimes(5) # Run the function 5 times concurrently async def my_async_task(): print("Task started") await asyncio.sleep(1) print("Task finished") asyncio.run(my_async_task())
-
Structured Threading:
retry(retries=3, delay=1)
: This decorator retries a function call if it raises an exception. It will retry up toretries
times, pausing fordelay
seconds between attempts.from nara.extra.tools import retry import random @retry(retries=5, delay=2) def might_fail(): if random.random() < 0.5: raise Exception("Function failed!") print("Function succeeded!") might_fail()
repeatForever(sleep_interval=None, end_after=None)
: Executes a function or coroutine repeatedly.sleep_interval
specifies the pause between calls.end_after
(a human-readable time string, e.g., "10 minutes") allows setting a time limit.from nara.extra.tools import repeatForever import asyncio import time @repeatForever(sleep_interval=1, end_after="5 seconds") # Repeat every second for 5 seconds def print_hello(): print("Hello") @repeatForever(sleep_interval=1, end_after="5 seconds") async def async_print_hello(): print("Async Hello") await asyncio.sleep(0.5) # Simulate some work print_hello() # Normal function example async def main(): # Asyncio function example await async_print_hello() asyncio.run(main())
Error Handling:repeatForever
raiseshumanfriendly.InvalidTimespan
ifend_after
is not a valid timespan string.
-
File Management:
-
clearPycacheDirectories(directory, display_status=False)
: Recursively deletes all__pycache__
directories within the givendirectory
. Setdisplay_status=True
to print which directories were removed.from nara.extra.file_manager import clearPycacheDirectories clearPycacheDirectories(".", display_status=True) # Clear __pycache__ in the current directory and subdirectories
-
displayFileStructure(directory=os.getcwd(), tree=None, console=None)
: Prints a tree-like representation of the directory structure to the console.from nara.extra.file_manager import displayFileStructure displayFileStructure(".") # Display the file structure of the current directory
-
-
Date and Time Utilities:
CurrentDateTime
: Retrieve current date and time information for various countries using external API. Uses this API.from nara.extra.date_time import CurrentDateTime dt = CurrentDateTime() country_codes = dt.countryCodes() # Get available country codes indian_time = dt.time("IN", encode=True) # Get current Indian time as datetime object us_date = dt.date("US") # Get current US date as string print(f"Country Codes: {country_codes}") print(f"Indian Time: {indian_time}") print(f"US Date: {us_date}")
-
Testing Tools:
-
saveTestResults(OutputFile, **outerkwargs)
: This decorator saves test results to a JSON file.outerkwargs
can include functions to calculate additional metrics (like mean or max) based on the test result.from nara.extra.extended_json.testing_tools import saveTestResults @saveTestResults("results.json", mean=lambda x: sum(x)/len(x), maximum=max) def test_function(a, b): return [a + b, a * b] test_function(2, 3) # Save results and calculated metrics to results.json
-
LoadTestResults(inputFile)
: Loads and returns the test results saved bysaveTestResults
.from nara.extra.extended_json.testing_tools import LoadTestResults results = LoadTestResults("results.json") print(results)
-
-
SQL Utilities: (Examples use a database file named
mydatabase.db
)-
SqlQueue(db_file)
: Implements a queue using a SQLite database, enabling persistent queueing even if your application restarts.from nara.extra.extended_sql import SqlQueue q = SqlQueue("mydatabase.db") q.put(10) q.put("Hello") retrieved_item = q.get() # Returns 10 (FIFO) print(retrieved_item)
-
TextStore(dbName)
: Stores and manages text lines in a SQLite database, providing methods for adding, updating, deleting, and retrieving text lines by ID or slices.from nara.extra.extended_sql import TextStore ts = TextStore("mydatabase.db") ts.addRecord("This is a test line.") ts.addRecord("Another line of text.") all_records = ts.listRecords() # Retrieve all records print(all_records)
-
SqlList(DbName, TableName)
: Enables you to use a SQLite table as if it were a Python list. You can append, access by index, slice, extend, pop, remove, and perform other list-like operations. Elements are stored as JSON strings.from nara.extra.extended_sql import SqlList sl = SqlList("mydatabase.db", "my_list_table") sl.append({"name": "Alice", "age": 30}) sl.append({"name": "Bob", "age": 25}) print(sl[0]) # Access by index (returns a dictionary) print(len(sl)) # Get the length of the SqlList
-
SQLiteDict(db_name)
: Uses a SQLite database as a persistent dictionary. Supports dictionary operations like setting, getting, deleting items, checking membership (in
), and iterating through keys or items. Stores all data types as strings.from nara.extra.extended_sql import SQLiteDict sd = SQLiteDict("mydatabase.db") sd['name'] = "Charlie" sd['age'] = 35 print(sd['name']) # Access by key print("name" in sd) # Check for key existence
Error Handling: The
get
method will returnNone
if the requested key is not found and the data in the "value" column cannot be evaluated as valid Python code, the SQLiteDict'sget
method will returnNone
, instead of raising an exception. It will also print an error message indicating the failure to evaluate the value.
-
-
Time Utilities:
-
timeIt(func)
: A decorator to measure and print the execution time of a function (both synchronous and asynchronous).import asyncio from nara.extra.tools import timeIt import time @timeIt def my_function(): time.sleep(1) # Simulate a second of work @timeIt async def my_async_function(): await asyncio.sleep(1) my_function() asyncio.run(my_async_function())
-
Usage
LLM Streaming Example (Groq)
from nara.llm._groq import Groq, LLAMA_32_90B_TEXT_PREVIEW
llm = Groq(LLAMA_32_90B_TEXT_PREVIEW) # Initialize the LLM
for chunk in llm.streamRun("Write a short story about a cat who goes on an adventure."):
print(chunk, end="", flush=True) # Print the story as it's generated
Prompt with Function Example
from nara.extra.prompt import Prompt, Role, Text, Function
def get_current_time():
from datetime import datetime
return datetime.now().strftime("%Y-%m-%d %H:%M:%S")
prompt = Prompt(role=Role.user, template=[
Text("The current time is: "),
Function(get_current_time),
Text(". Tell me a fun fact about cats.")
])
print(prompt.prompt)
✨ Authors ✨
Contributing
We welcome contributions! See CONTRIBUTING.md for guidelines.
License
MIT License. See LICENSE.txt for details.
Contact
Acknowledgements
We thank all contributors and the open-source community for their support.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file nara-0.5.tar.gz
.
File metadata
- Download URL: nara-0.5.tar.gz
- Upload date:
- Size: 51.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.11.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fbbc33818b82809334fcd1af7a8b35680e9b35899e8742113e51c3b239ae00d4 |
|
MD5 | c9f3e2e7ebefa42ce483dd5894c6fbcb |
|
BLAKE2b-256 | 9a5077d7f7ffed03f2d69a2c82861b81e5ed26b9a5ae0655a4105bcc983cf539 |
File details
Details for the file nara-0.5-py3-none-any.whl
.
File metadata
- Download URL: nara-0.5-py3-none-any.whl
- Upload date:
- Size: 71.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.11.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ce8889cb0b31ae31755832ca2ed09c193d72266c398597b41ae81dbe77dbd13c |
|
MD5 | deeae63003b760a3b055e756c70ea94b |
|
BLAKE2b-256 | c20ef9b3bd1e62644dfeb63fa2bee4b87c91ec38d297deef7a7ec194f203809e |