Skip to main content

Extremely lightweight compatibility layer between pandas, Polars, cuDF, and Modin

Project description

Narwhals

narwhals_small

PyPI version Documentation

Extremely lightweight compatibility layer between Polars, pandas, modin, and cuDF (and possibly more?).

Seamlessly support all, without depending on any!

  • Just use a subset of the Polars API, no need to learn anything new
  • No dependencies (not even Polars), keep your library lightweight
  • ✅ Separate lazy and eager APIs
  • ✅ Use Polars Expressions

Note: this is work-in-progress, and a bit of an experiment, don't take it too seriously.

Installation

pip install narwhals

Or just vendor it, it's only a bunch of pure-Python files.

Usage

There are three steps to writing dataframe-agnostic code using Narwhals:

  1. use narwhals.DataFrame or narwhals.LazyFrame to wrap a pandas/Polars/Modin/cuDF DataFrame/LazyFrame in a Narwhals class

  2. use the subset of the Polars API supported by Narwhals

  3. use narwhals.to_native to return an object to the user in its original dataframe flavour. For example:

    • if you started with pandas, you'll get pandas back
    • if you started with Polars, you'll get Polars back
    • if you started with Modin, you'll get Modin back (and compute will be distributed)
    • if you started with cuDF, you'll get cuDF back (and compute will happen on GPU)

Example

Here's an example of a dataframe agnostic function:

from typing import Any
import pandas as pd
import polars as pl

import narwhals as nw


def my_agnostic_function(
    suppliers_native,
    parts_native,
):
    suppliers = nw.LazyFrame(suppliers_native)
    parts = nw.LazyFrame(parts_native)

    result = (
        suppliers.join(parts, left_on="city", right_on="city")
        .filter(nw.col("weight") > 10)
        .group_by("s")
        .agg(
            weight_mean=nw.col("weight").mean(),
            weight_max=nw.col("weight").max(),
        )
    )
    return nw.to_native(result)

You can pass in a pandas or Polars dataframe, the output will be the same! Let's try it out:

suppliers = {
    "s": ["S1", "S2", "S3", "S4", "S5"],
    "sname": ["Smith", "Jones", "Blake", "Clark", "Adams"],
    "status": [20, 10, 30, 20, 30],
    "city": ["London", "Paris", "Paris", "London", "Athens"],
}
parts = {
    "p": ["P1", "P2", "P3", "P4", "P5", "P6"],
    "pname": ["Nut", "Bolt", "Screw", "Screw", "Cam", "Cog"],
    "color": ["Red", "Green", "Blue", "Red", "Blue", "Red"],
    "weight": [12.0, 17.0, 17.0, 14.0, 12.0, 19.0],
    "city": ["London", "Paris", "Oslo", "London", "Paris", "London"],
}

print("pandas output:")
print(
    my_agnostic_function(
        pd.DataFrame(suppliers),
        pd.DataFrame(parts),
    )
)
print("\nPolars output:")
print(
    my_agnostic_function(
        pl.LazyFrame(suppliers),
        pl.LazyFrame(parts),
    ).collect()
)
pandas output:
    s  weight_mean  weight_max
0  S1         15.0        19.0
1  S2         14.5        17.0
2  S3         14.5        17.0
3  S4         15.0        19.0

Polars output:
shape: (4, 3)
┌─────┬─────────────┬────────────┐
│ s   ┆ weight_mean ┆ weight_max │
│ --- ┆ ---         ┆ ---        │
│ str ┆ f64         ┆ f64        │
╞═════╪═════════════╪════════════╡
│ S2  ┆ 14.5        ┆ 17.0       │
│ S3  ┆ 14.5        ┆ 17.0       │
│ S4  ┆ 15.0        ┆ 19.0       │
│ S1  ┆ 15.0        ┆ 19.0       │
└─────┴─────────────┴────────────┘

Magic! 🪄

Scope

  • Do you maintain a dataframe-consuming library?
  • Is there a Polars function which you'd like Narwhals to have, which would make your job easier?

If, I'd love to hear from you!

Note: You might suspect that this is a secret ploy to infiltrate the Polars API everywhere. Indeed, you may suspect that.

Why "Narwhals"?

Because they are so awesome.

Thanks to Olha Urdeichuk for the illustration!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

narwhals-0.7.0.tar.gz (280.1 kB view details)

Uploaded Source

Built Distribution

narwhals-0.7.0-py3-none-any.whl (26.6 kB view details)

Uploaded Python 3

File details

Details for the file narwhals-0.7.0.tar.gz.

File metadata

  • Download URL: narwhals-0.7.0.tar.gz
  • Upload date:
  • Size: 280.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for narwhals-0.7.0.tar.gz
Algorithm Hash digest
SHA256 677de47b827dd852a90242b8f591310043d1e32c5519eadf216174000dcb5516
MD5 0725febbdbeb1a8361afe091d74b429d
BLAKE2b-256 269c02f60ebdee1385603fac095664b86ef69c25ca64dfe1c7a695de68664ec6

See more details on using hashes here.

File details

Details for the file narwhals-0.7.0-py3-none-any.whl.

File metadata

  • Download URL: narwhals-0.7.0-py3-none-any.whl
  • Upload date:
  • Size: 26.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for narwhals-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ac980ce35d8e265854ecca88105e7ff379c35eb850412c574cfc1ad40c5a6760
MD5 18f5380980b20935c78baf119fcd3a1f
BLAKE2b-256 1ea2fae56e7d002ae758f580103b1f5eab818986a188894147553a8a42b4756e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page