Skip to main content

Extremely lightweight compatibility layer between pandas, Polars, cuDF, and Modin

Project description

Narwhals

narwhals_small

PyPI version

Extremely lightweight and extensible compatibility layer between Polars, pandas, Modin, and cuDF (and more!).

Seamlessly support all, without depending on any!

  • Just use a subset of the Polars API, no need to learn anything new
  • No dependencies (not even Polars), keep your library lightweight
  • ✅ Separate lazy and eager APIs
  • ✅ Use Expressions
  • ✅ 100% branch coverage, tested against pandas and Polars nightly builds!
  • ✅ Preserve your Index (if present) without it getting in the way!

Used by

Join the party!

Installation

pip install narwhals

Or just vendor it, it's only a bunch of pure-Python files.

Usage

There are three steps to writing dataframe-agnostic code using Narwhals:

  1. use narwhals.from_native to wrap a pandas/Polars/Modin/cuDF DataFrame/LazyFrame in a Narwhals class

  2. use the subset of the Polars API supported by Narwhals

  3. use narwhals.to_native to return an object to the user in its original dataframe flavour. For example:

    • if you started with pandas, you'll get pandas back
    • if you started with Polars, you'll get Polars back
    • if you started with Modin, you'll get Modin back (and compute will be distributed)
    • if you started with cuDF, you'll get cuDF back (and compute will happen on GPU)

What about Ibis?

Like Ibis, Narwhals aims to enable dataframe-agnostic code. However, Narwhals comes with zero dependencies, is about as lightweight as it gets, and is aimed at library developers rather than at end users. It also does not aim to support as many backends, preferring to instead focus on dataframes. So, which should you use?

  • If you need to run complicated analyses and aren't too bothered about package size: Ibis!
  • If you're a library maintainer and want the thinnest-possible layer to get cross-dataframe library support: Narwhals!

Here is the package size increase which would result from installing each tool in a non-pandas environment:

image

Example

See the tutorial for several examples!

Scope

  • Do you maintain a dataframe-consuming library?
  • Is there a Polars function which you'd like Narwhals to have, which would make your work easier?

If, I'd love to hear from you!

Note: You might suspect that this is a secret ploy to infiltrate the Polars API everywhere. Indeed, you may suspect that.

Why "Narwhals"?

Coz they are so awesome.

Thanks to Olha Urdeichuk for the illustration!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

narwhals-0.8.10.tar.gz (315.3 kB view details)

Uploaded Source

Built Distribution

narwhals-0.8.10-py3-none-any.whl (44.6 kB view details)

Uploaded Python 3

File details

Details for the file narwhals-0.8.10.tar.gz.

File metadata

  • Download URL: narwhals-0.8.10.tar.gz
  • Upload date:
  • Size: 315.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for narwhals-0.8.10.tar.gz
Algorithm Hash digest
SHA256 020d229ad08739c78b00a88fe4cf99b5271fcd0e6c3e714b2bd0291f3615aa2d
MD5 9c5a7beaf2134ada791482f5ae4c6be6
BLAKE2b-256 fb735246f035be4528d616083aefbfabac40db12354c3dd3174474150b74e381

See more details on using hashes here.

File details

Details for the file narwhals-0.8.10-py3-none-any.whl.

File metadata

  • Download URL: narwhals-0.8.10-py3-none-any.whl
  • Upload date:
  • Size: 44.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for narwhals-0.8.10-py3-none-any.whl
Algorithm Hash digest
SHA256 bd145cbb8c277d877b2126686d5ad243423d43707aaaf7d1d3ad1f2acc353ccf
MD5 8f3aaa37d74df4ba81b6f1b159c32553
BLAKE2b-256 db6c7f72ccfb5f0ef6a32ece707d3ef72edddf6abd68a4e1be0da4fd88162053

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page