Skip to main content

Extremely lightweight compatibility layer between pandas, Polars, cuDF, and Modin

Project description

Narwhals

narwhals_small

PyPI version

Extremely lightweight and extensible compatibility layer between Polars, pandas, Modin, and cuDF (and more!).

Seamlessly support all, without depending on any!

  • Just use a subset of the Polars API, no need to learn anything new
  • No dependencies (not even Polars), keep your library lightweight
  • ✅ Separate lazy and eager APIs
  • ✅ Use Expressions
  • ✅ 100% branch coverage, tested against pandas and Polars nightly builds!
  • ✅ Preserve your Index (if present) without it getting in the way!

Used by

Join the party!

Installation

pip install narwhals

Or just vendor it, it's only a bunch of pure-Python files.

Usage

There are three steps to writing dataframe-agnostic code using Narwhals:

  1. use narwhals.from_native to wrap a pandas/Polars/Modin/cuDF DataFrame/LazyFrame in a Narwhals class

  2. use the subset of the Polars API supported by Narwhals

  3. use narwhals.to_native to return an object to the user in its original dataframe flavour. For example:

    • if you started with pandas, you'll get pandas back
    • if you started with Polars, you'll get Polars back
    • if you started with Modin, you'll get Modin back (and compute will be distributed)
    • if you started with cuDF, you'll get cuDF back (and compute will happen on GPU)

What about Ibis?

Like Ibis, Narwhals aims to enable dataframe-agnostic code. However, Narwhals comes with zero dependencies, is about as lightweight as it gets, and is aimed at library developers rather than at end users. It also does not aim to support as many backends, preferring to instead focus on dataframes. So, which should you use?

  • If you need to run complicated analyses and aren't too bothered about package size: Ibis!
  • If you're a library maintainer and want the thinnest-possible layer to get cross-dataframe library support: Narwhals!

Here is the package size increase which would result from installing each tool in a non-pandas environment:

image

Example

See the tutorial for several examples!

Scope

  • Do you maintain a dataframe-consuming library?
  • Is there a Polars function which you'd like Narwhals to have, which would make your work easier?

If, I'd love to hear from you!

Note: You might suspect that this is a secret ploy to infiltrate the Polars API everywhere. Indeed, you may suspect that.

Why "Narwhals"?

Coz they are so awesome.

Thanks to Olha Urdeichuk for the illustration!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

narwhals-0.8.18.tar.gz (327.6 kB view details)

Uploaded Source

Built Distribution

narwhals-0.8.18-py3-none-any.whl (56.7 kB view details)

Uploaded Python 3

File details

Details for the file narwhals-0.8.18.tar.gz.

File metadata

  • Download URL: narwhals-0.8.18.tar.gz
  • Upload date:
  • Size: 327.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for narwhals-0.8.18.tar.gz
Algorithm Hash digest
SHA256 95647f72f733322836e3b1a1835ce091f5c5f3c4a6d2e23d5fbac7fae2437b7b
MD5 c7627b23b0959f61633ec6fc090b0728
BLAKE2b-256 fbd7553c90505cc5dae9c14ecab37e17942616a97fd063d6e51eb6b296eaa839

See more details on using hashes here.

File details

Details for the file narwhals-0.8.18-py3-none-any.whl.

File metadata

  • Download URL: narwhals-0.8.18-py3-none-any.whl
  • Upload date:
  • Size: 56.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for narwhals-0.8.18-py3-none-any.whl
Algorithm Hash digest
SHA256 43f921c70c64501f5371fb01e2334c54da334886b1ba5b280e3181abfc189ceb
MD5 ef1b4dd524193177f757e0131003c7b1
BLAKE2b-256 7583fb4e76db297a21e7c2f4848f665d020796f66b4607556b654686b3d77548

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page