Skip to main content

Extremely lightweight compatibility layer between pandas, Polars, cuDF, and Modin

Project description

Narwhals

narwhals_small

PyPI version

Extremely lightweight and extensible compatibility layer between Polars, pandas, Modin, and cuDF (and more!).

Seamlessly support all, without depending on any!

  • Just use a subset of the Polars API, no need to learn anything new
  • Zero dependencies, zero 3rd-party imports: Narwhals only uses what the user passes in, so you can keep your library lightweight
  • ✅ Separate lazy and eager APIs, use expressions
  • ✅ Support pandas' complicated type system and index, without either getting in the way
  • 100% branch coverage, tested against pandas and Polars nightly builds

Used by

Join the party!

Installation

  • pip (recommended, as it's the most up-to-date)
    pip install narwhals
    
  • conda-forge (also fine, but the latest version may take longer to appear)
    conda install -c conda-forge narwhals
    

Usage

There are three steps to writing dataframe-agnostic code using Narwhals:

  1. use narwhals.from_native to wrap a pandas/Polars/Modin/cuDF DataFrame/LazyFrame in a Narwhals class

  2. use the subset of the Polars API supported by Narwhals

  3. use narwhals.to_native to return an object to the user in its original dataframe flavour. For example:

    • if you started with pandas, you'll get pandas back
    • if you started with Polars, you'll get Polars back
    • if you started with Modin, you'll get Modin back (and compute will be distributed)
    • if you started with cuDF, you'll get cuDF back (and compute will happen on GPU)

What about Ibis?

Like Ibis, Narwhals aims to enable dataframe-agnostic code. However, Narwhals comes with zero dependencies, is about as lightweight as it gets, and is aimed at library developers rather than at end users. It also does not aim to support as many backends, instead preferring to focus on dataframes. So, which should you use?

  • If you need to run complicated analyses and aren't too bothered about package size: Ibis!
  • If you're a library maintainer and want the thinnest-possible layer to get cross-dataframe library support: Narwhals!

Here is the package size increase which would result from installing each tool in a non-pandas environment:

image

Example

See the tutorial for several examples!

Scope

  • Do you maintain a dataframe-consuming library?
  • Do you have a specific Polars function in mind that you would like Narwhals to have in order to make your work easier?

If you said yes to both, we'd love to hear from you!

Note: You might suspect that this is a secret ploy to infiltrate the Polars API everywhere. Indeed, you may suspect that.

Why "Narwhals"?

Coz they are so awesome.

Thanks to Olha Urdeichuk for the illustration!

Project details


Release history Release notifications | RSS feed

This version

0.9.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

narwhals-0.9.1.tar.gz (339.2 kB view details)

Uploaded Source

Built Distribution

narwhals-0.9.1-py3-none-any.whl (60.8 kB view details)

Uploaded Python 3

File details

Details for the file narwhals-0.9.1.tar.gz.

File metadata

  • Download URL: narwhals-0.9.1.tar.gz
  • Upload date:
  • Size: 339.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for narwhals-0.9.1.tar.gz
Algorithm Hash digest
SHA256 5851ddff7bd8fe59b77926500db35006524bf7eae8266139a2129700b4fe6950
MD5 e50a8f7ae6fd13c8a85066d2d2a59e8b
BLAKE2b-256 f10eaa4fcf2c6b729affb47a6d98ab6906bdf3587474d5754c5f1d1a5c69a1a3

See more details on using hashes here.

File details

Details for the file narwhals-0.9.1-py3-none-any.whl.

File metadata

  • Download URL: narwhals-0.9.1-py3-none-any.whl
  • Upload date:
  • Size: 60.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for narwhals-0.9.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1a997cbc9083b0ee039d2773692c5610653cce0a229a28ea03d845a0aec9647b
MD5 015a16b408caa925658ac3d4559b5922
BLAKE2b-256 105dfc39d532dcad82d6d5e95e9219494766f5e705b10e1d12b6cc3b0b073421

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page