Access data from the MMS mission via its API.
Project description
PyMMS
Installation
For development purposes, install the package using
$ python3 setup.py develop --user
This installation will reflect any changes made in the pymms development directory without the need to reinstall the package every single time.
Scripts
gls
The pymms.gls
package includes two user-runnable console commands: gls-mp
and gls-mp-data
. Calling gls-mp
runs the mp-dl-unh
model to generate predicted SITL selections over a date range.
$ gls-mp -h
usage: gls-mp [-h] [-g] [-t] [-c C] [-temp] start end sc
positional arguments:
start Start date of data interval, formatted as either '%Y-%m-%d'
or '%Y-%m-%dT%H:%M:%S'. Optionally an integer, interpreted
as an orbit number.
end Start date of data interval, formatted as either '%Y-%m-%d'
or '%Y-%m-%dT%H:%M:%S'. Optionally an integer, interpreted
as an orbit number.
sc Spacecraft IDs ('mms1', 'mms2', 'mms3', 'mms4')
optional arguments:
-h, --help show this help message and exit
-g, -gpu Enables use of GPU-accelerated model for faster
predictions. Requires CUDA installed.
-t, -test Runs a test routine on the model.
-c C, -chunks C Break up the processing of the date interval in C chunks.
-temp If running the job in chunks, deletes the contents of the
MMS root data folder after each chunk.
Calling gls-mp-data
generates a CSV file containing data formatted and preprocessed for gls-mp
. This can be used when training your own version of mp-dl-unh.
$ gls-mp-data -h
usage: gls-mp-data [-h] [-is] [-ip] [-v] sc level start end output
positional arguments:
sc Spacecraft IDs ('mms1', 'mms2', 'mms3', 'mms4')
level Data quality level ('l1a', 'l1b', 'sitl', 'l2pre',
'l2', 'l3')
start Start date of data interval, formatted as either
'%Y-%m-%d' or '%Y-%m-%dT%H:%M:%S'. Optionally an
integer, interpreted as an orbit number.
end Start date of data interval, formatted as either
'%Y-%m-%d' or '%Y-%m-%dT%H:%M:%S'. Optionally an
integer, interpreted as an orbit number.
output Path the output CSV file, including the CSV file's
name.
optional arguments:
-h, --help show this help message and exit
-is, --include-selections
Includes SITL selections in the output data.
-ip, --include-partials
Includes partial magnetopause crossings in SITL
selections.
-v, --verbose If true, prints out optional information about
downloaded variables.
If PyMMS is installed with the --user
flag and PyMMS is used from a unix system, you must call:
$ export PATH=~/.local/bin$PATH
$ source ~/.bash_profile
before calling gls-mp
or gls-mp-data
.
Citation
If you make use of this software to analyze MMS use or data, please consider citing the software. Follow the Zenodo DOI at the top for a citation to the most recent release, or head to Zenodo to see the citations/DOIs of other releases.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file nasa-pymms-0.4.8.tar.gz
.
File metadata
- Download URL: nasa-pymms-0.4.8.tar.gz
- Upload date:
- Size: 112.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c4c701e3bfb269e31fc5e2e963bbb71864738484c0e606f0ebf9a5b63f471672 |
|
MD5 | f9f818340ec78e1bf9a989a274e87ee1 |
|
BLAKE2b-256 | 496f2e260d19f9722207fa97cd8cc092a86636ff66e60e25570d268106462f42 |
File details
Details for the file nasa_pymms-0.4.8-py3-none-any.whl
.
File metadata
- Download URL: nasa_pymms-0.4.8-py3-none-any.whl
- Upload date:
- Size: 137.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 94f1638c1e115351851033722848b356b6984b81ff8f1c56bd372bdb5e75f2de |
|
MD5 | 9716b837eb1b9d358d641a1977c4e19b |
|
BLAKE2b-256 | 14f6e3f76e49910dce56e54b9cb79505bf7970b698c5d8f7e15044a3568cda8f |