Skip to main content

A simple and fast simulator for remote network pen-testing

Project description

Status: Stable release. No extra development is planned, but still being maintained (bug fixes, etc).

Network Attack Simulator

Documentation Status

Network Attack Simulator (NASim) is a simulated computer network complete with vulnerabilities, scans and exploits designed to be used as a testing environment for AI agents and planning techniques applied to network penetration testing.

Installation

The easiest way to install the latest version of NASim hosted on PyPi is via pip:

$ pip install nasim

To install dependencies for running the DQN test agent (this is needed to run the demo) run:

$ pip install nasim[dqn]

To get the latest bleeding edge version and install in development mode see the Install docs

Demo

To see NASim in action, you can run the provided demo to interact with an environment directly or see a pre-trained AI agent in action.

To run the tiny benchmark scenario demo in interactive mode run:

$ python -m nasim.demo tiny

This will then run an interactive console where the user can see the current state and choose the next action to take. The goal of the scenario is to compromise every host with a non-zero value.

See here for the full list of scenarios.

To run the tiny benchmark scenario demo using the pre-trained AI agent, first ensure the DQN dependencies are installed (see Installation section above), then run:

$ python -m nasim.demo tiny -ai

Note: Currently you can only run the AI demo for the tiny scenario.

Documentation

The documentation is available at: https://networkattacksimulator.readthedocs.io/

Using with OpenAI gym

NASim implements the Open AI Gym environment interface and so can be used with any algorithm that is developed for that interface.

See Starting NASim using OpenAI gym.

Authors

Jonathon Schwartz - Jonathon.schwartz@anu.edu.au

License

MIT © 2020, Jonathon Schwartz

What’s new

  • 2020-09-20 (v 0.7.2) (MICRO release)

    • Fixed bug with ‘re-registering’ Gym environments when reloading modules

    • Added example implementations of Tabular Q-Learning: agents/ql_agent.py and agents/ql_replay.py

    • Added Agents section to docs, along with other minor doc updates

  • 2020-09-20 (v 0.7.1) (MICRO release)

    • Added some scripts for running random benchmarks and describing benchmark scenarios

    • Added some more docs (including for creating custom scenarios) and updated other docs

  • 2020-09-20 (v 0.7.0) (MINOR release)

    • Implemented host based firewalls

    • Added priviledge escalation

    • Added a demo script, including a pre-trained agent for the ‘tiny’ scenario

    • Fix to upper bound calculation (factored in reward for discovering a host)

  • 2020-08-02 (v 0.6.0) (MINOR release)

    • Implemented compatibility with gym.make()

    • Updated docs for loading and interactive with NASimEnv

    • Added extra functions to nasim.scenarios to make it easier to load scenarios seperately to a NASimEnv

    • Fixed bug to do with class attributes and creating different scenarios in same python session

    • Fixed up bruteforce agent and tests

  • 2020-07-31 (v 0.5.0) (MINOR release)

    • First official release on PyPi

    • Cleaned up dependencies, setup.py, etc and some small fixes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nasim-0.7.2.tar.gz (53.0 kB view details)

Uploaded Source

Built Distribution

nasim-0.7.2-py3-none-any.whl (89.2 kB view details)

Uploaded Python 3

File details

Details for the file nasim-0.7.2.tar.gz.

File metadata

  • Download URL: nasim-0.7.2.tar.gz
  • Upload date:
  • Size: 53.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for nasim-0.7.2.tar.gz
Algorithm Hash digest
SHA256 eb1857c3657479c6c3ecf3fd9a808fe3cab97c967d031f5afcb711d0ed24dd5b
MD5 ea077857c21904e92e8f6b8cc8494627
BLAKE2b-256 5eb343ffbe19fb1f6c6538276abe25f31e59b2702384d8aafd06444e99285747

See more details on using hashes here.

File details

Details for the file nasim-0.7.2-py3-none-any.whl.

File metadata

  • Download URL: nasim-0.7.2-py3-none-any.whl
  • Upload date:
  • Size: 89.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for nasim-0.7.2-py3-none-any.whl
Algorithm Hash digest
SHA256 fdbbdff066e5e75a11cdd65c0b29960fe130e16cb568c97f9e0a67841849e62c
MD5 eaf75acb61619a83b63c0a5f1a9ae511
BLAKE2b-256 b546a6017e196782252286f791f71406d739e30db8858d0e2f666e06cb8785a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page