Skip to main content

Nateve Programming Language

Project description

Nateve

Nateve is a new general domain programming language open source inspired by languages like Python, C++, JavaScript, and Wolfram Mathematica.

Nateve is an transpiled language. Its first transpiler, Adam, is fully built using Python 3.8.

For detailed info, see the Nateve documentation.

Nateve principal features

1. Simple and easy to use

Just install the package and start coding.

2. Intuitive and easy to understand

Quickly understand the language and its features.

3. 100% free and open source

The language is free and open source. You can use it for any purpose. See the license.

4. 100% customizable

You can customize the language to your needs. You can make your own language from scratch. See the Welcome to Nateve templates section for more information.

Welcome to Nateve templates

Nateve Language includes a set of templates that can be used to customize Nateve. Templates are Python modules included in the templates subpackage. You can also create your own templates.

A template is a Python module that contains a set of words translations, functions definitions, and many other customizations. Every template can be used to customize Nateve. You just need to import the template with the using command and then use the template in the Nateve source code.

Learn more about templates in the templates use section.

Why use Nateve templates?

1. Customization

You can customize the language to your needs. Feel free to create your own templates or modify existing templates.

2. Team work

Your team can work together using different languages in the same file or project. For example, you can start coding in English and then switch to French.

It makes it easier to work together. Different team members can work on the same project using their native languages.

3. Easy to share

Your templates can be used by other developers. You can easily share your templates with the community.

Options of command line

  1. build: Transpile Nateve source code to Python 3.8
  2. run: Run Nateve source code
  3. compile: Transpile Nateve source code to an executable file (.exe)
  4. run-init-loop: Run Nateve source code with an initial source and a loop source
  5. set-time-unit: Set Adam time unit to seconds or miliseconds (default: milisecond)
  6. help: Get help

Nateve Tutorial

In this tutorial, we will learn how to use Nateve step by step.

Requirements

  1. python 3.5<= version <=3.8 added to the PATH
  2. pip >=21.3.1
  3. eggdriver >=0.0.1

Extra requirements for Quantum Computing developers

  1. qiskit >=0.30.0
  2. numpy >=1.20.1

Step 0: Learn the basics

We recommend read this README.md file.

Step 1: Installation

Recommended Installation (using pip):

Requeriments:

  1. pip (latest version)
1. Install adam using pip
pip install nateve-adam

Installing adam using pip alows you to invoke Adam with the command adam.

2. Add your favorite templates (optional)

If you want, you can create tour own templates in the folder Python/Libs/site-packages/adam/templates
Learn more about templates in the templates use section.

Deprecated Installation (for Nateve <= 0.0.1):

1. Download the source as a Zip

Download now!

2. Unzip the source Adam-main.zip
3. Move the content of the folder Adam-main into the Python/Libs folder

You just need the subfolders:

  1. adam: the Nateve core
  2. nqs: for Quantum Computing
  3. user: for NQS customizable functions

Feel free to delete the examples, testing files and the other folders. DO NOT delete the file adam.bat, it will be used in the next step

4. Add the adam.bat file to the PATH

You can also move the adam.bat file into the Python/Scripts folder in order to easily add adam.bat to the PATH

Adding adam.bat to the PATH alows you to invoke Adam with the command adam. Instead, you can invoke Adam with the command py -m adam without using the adam.bat file.

5. Add your favorite templates (optional)

If you want, you can create tour own templates in the folder Python/Libs/adam/templates
Learn more about templates in the templates use section.

Step 2: Create a new Nateve file

Create a file with the file extension .nate and join to the Nateve community.

Quick start examples

Hello World program

print("Hello, World!")

Is prime? program

def is_prime(n) {
    if n == 1 {
        return False
    }
    for i in range(2, n) {
        if n % i == 0 {
            return False
        }
    }
    return True
}

n = ninput("Enter a number: ")

if is_prime(n) {
    print("It is a prime number.")
}
else {
    print("It is not a prime number.")
}

Comments

If you want to comment your code, you can use:

~ This is a single line comment ~

~
    And this a multiline comment
~

Variables

This language uses variables. For declaring variables, you just need to write the name of the variable and the value of the variable.

For example:

a = 1                          ~ Interger ~
b = 1.0                        ~ Float ~
c = 1 + 2j                     ~ Complex ~
d = "hello"                    ~ String ~
e = True                       ~ Boolean ~
f = [1,2,3]                    ~ Vector ~
g = (1,2)                      ~ Tuple ~
h = Polynomial("1 +2x +x^2")   ~ Polynomial ~
i = $
| 1 1 2 3 4 |
| 0 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
$                              ~ Matrix ~

Nateve allows data type as Integer, Float, Complex, Boolean, String, Tuple, None, Vector, Polynomial and Matrix.

Vectors

The Vectors allow to use all the data types before mentioned, as well as lists and functions.

Also, they allow to get an item through the next notation:

value_list = [1,2,3,4,5]
value_list2 = [0,1,0,1,0]

print(value_list[0])                ~ Output: 1 ~
print(value_list[0 : 4])            ~ Output: [1 2 3 4] ~

print(value_list.dot(value_list2))  ~ Output: 6 ~

print(value_list.add(value_list2))  ~ Output: [1 3 3 5 5] ~

Matrices

The Matrices are a special type of vectors of vectors.

a = $
| 1 5 |
| 0 2 |
$

b = $
|0 1|
|1 0|
$

print(a)
~ Output:
| 1 5 |
| 0 2 |
~

c = a.dot(b)
print(c)
~ Output:
| 5 1 |
| 2 0 |
~

d = a.plus(b)
print(d)
~ Output:
| 1 6 |
| 1 2 |
~

Functions

For declaring a function, you have to use the next syntax:

def example_function(argument1, argument2, ...) {
    ~ sentence1 ~
    ~ sentence2 ~
    ...
    return Return_Value
} 

example_function(argument1, argument2, ...) ~ Call the function ~

Conditionals

Regarding the conditionals, the syntax structure is:

if condition {
    ~ consequence ~
}
elif condition {
    ~ other_consequence ~
}
...
else {
    ~  default_consequence ~
}

For example:

if x <= 1 and x % 3 == 0 {
    a = 0
}
elif x == 9 {
    a = 1
}
else {
    a = 2
}

Loops

In order to use loops, you have to use the next syntax:

While Loop

while condition {
    ~ sentence1 ~
    ~ sentence2 ~
    ...
}  

For Loop

for iterator in iterable {
    ~ sentence1 ~
    ~ sentence2 ~
    ...
}  

Using Templates

One of the most important features of Nateve is the use of templates. Templates are a way to write code in a more readable way. They are words translations written in Python. In order to use templates, you just have to write the protected word "using", and then, write the name of the template. For example:

using "template_name"

Nateve includes the following standard templates:

  1. "english": This template is used to write the code of the program in English. It is the default template.
  2. "spanish": This template is used to write the code of the program in Spanish.
  3. "french": This template is used to write the code of the program in French.

You also can use your own templates. Just create a file with the name of the template and write the code of the template in the file. Here is a blank template:

# The name of the transpiler. This line is required. Do not change it.
transpiler_name = "adam"

"""
The following code is the translation of the code.
You can write your code here and modify the content of the variables.
Do not change the name of the variables.
"""

# All the symbols that the transpiler uses.
mayusc = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
alphabet = mayusc + mayusc.lower() + "_"
digits = "0123456789"
alphanum = alphabet + digits
blanks = "/t /n"
strings = ["'", '"', '"""', "'''"]
matrices = "$"
vectors = "[]"
embedded = "°"
commentaries = "~"
floating = "."
one_char_symbols = "+-*/%=<>()[]{}#@,."
two_char_symbols = ["//", "==", "<=", ">="]

# All the data types that the transpiler uses.
FLOAT = "float"
INT = "int"
COMPLEX = "complex"
STRING = "string"
DOCSTRING = "docstring"
NULL = "none"
MATRIX = "matrix"
VECTOR = "vector"

# All the keywords that the transpiler uses.
USE, INCLUDE = "using", "include"
IMPORT, FROM, AS, PASS, IN = "import", "from", "as", "pass", "in"
IF, ELIF, ELSE = "if", "elif", "else"
TRY, EXCEPT, WITH = "try", "except", "with"
WHILE, FOR, BREAK, CONTINUE = "while", "for", "break", "continue"
OPERATOR, RETURN = "def", "return"
CLASS, SELF = "class", "self"
AND, OR, NOT, TRUE, FALSE = "and", "or", "not", "True", "False"

# All the status codes that the transpiler uses.
embedding = 200
identifier = 300
eof = 400

# All extra functions that the transpiler uses. Feel free to add your own functions.
# The string special_functions is used to write these functions.
# You can use variables in it using the fstring notation.
special_functions = f"""
def ninput(prompt = '', default = ''):
    return float(input(prompt, default))

def binput(prompt = '', default = ''):
    return bool(input(prompt, default))

def update_std():
    subprocess.call([sys.executable, '-m', 'pip', 'install', 'eggdriver'])
"""

Some Examples

~Nateve Example 1~

update_std()  ~update std library~

for i in range(2) {
    print(i)
}

install("matplotlib")

try {
    print(2/0)
}
    
except {
    print("xd")
}

Output:

0
1
matplotlib successfully installed
xd
~Nateve Example 2~

theta = pi/3
print(sin(theta), cos(theta), tan(theta))

p = sin_serie
print(p.eval(theta))

derive(p)

print(p.eval(theta))

import numpy as np
x = "hello"
c = Matrix("""
| 1 1 2 3 4 |
| 0 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
""")
c.display()

a = Vector("[ 1 2 3 4 5 6 30 0 9]")
a.display()

Output:

0.8660254037844386 0.5000000000000001 1.73205080756887
0.8660254037844386
0.5000000000000001
| 1 1 2 3 4 |
| 0 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
[ 1 2 3 4 5 6 30 0 9 ]
~Nateve Example 3~

using "spanish"

theta = pi/3
imprime(sen(theta), cos(theta), tan(theta))

p = serie_sen
imprime(p.eval(theta))

deriva(p)

imprime(p.eval(theta))

importa numpy como np
x = "hello"
c = Matriz("""
| 1 1 2 3 4 |
| 0 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
""")
c.display()

a = Vector("[ 1 2 3 4 5 6 30 0 9]")
a.display()

Output:

0.8660254037844386 0.5000000000000001 1.73205080756887
0.8660254037844386
0.5000000000000001
| 1 1 2 3 4 |
| 0 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
| 1 1 2 3 4 |
[ 1 2 3 4 5 6 30 0 9 ]
~Nateve Example 4~

using "spanish"

amo_Nateve = verdadero

si  amo_Nateve == verdadero {
    imprime("Yo amo Nateve!")
}

delocontrario {
    imprime("Odio Nateve :c")
}

usando "english"

if 1 < 3 {
    print("Try Nateve!")
}
else {
    print("NO")
}

using "french"

v = "Bonjour"
imprimer(v, "Nateve!")

Output:

Yo amo Nateve!
Try Nateve!
Bonjour Nateve!
~Nateve Example 5~

include "example4.nate"

using "spanish"

imprime("Nateve example 5")

Output:

Yo amo Nateve!
Try Nateve!
Bonjour Nateve!
Nateve example 5
~Nateve Example 6~

using "spanish"

incluye "example5.nate"

a = $
| 1 5 |
| 0 2 |
$

b = $
|0 1|
|1 0|
$

imprime("a = ")
imprime(a)

imprime("b = ")
imprime(b)

c = a.dot(b)

imprime("a * b =")
imprime(c)

imprime("a + b =")
print(a.plus(b))

d = [1, 2, 3, 4, 5]
imprime(d)

e = [0, 1, 0, 1, 0]
imprime(e)

f = d.dot(e)
imprime(f)

g = d.plus(e)
imprime(g)

~ using spanish, "y" means "and".
Then, we need to use other template like french ~

using "french"

definir r(x, y, z){
retourner $
|x|
|y|
|z|
$
}

x, y, z = 1, 5, 3

j = r(x, y, z)

imprimer(j)

k = $
|2 0 0|
|0 2 0|
|0 0 2|
$

imprimer(k.dot(j))

Output:

Yo amo Nateve!
Try Nateve!
Bonjour Nateve!
Nateve example 5
a =
| 1 5 |
| 0 2 |

b =
| 0 1 |
| 1 0 |

a * b =
| 5 1 |
| 2 0 |

a + b =
| 1 6 |

[1, 2, 3, 4, 5]
[0, 1, 0, 1, 0]
6
[1, 3, 3, 5, 5]
| 1 |
| 5 |
| 3 |

| 2 |
| 10 |
| 6 |

Feedback

I would really appreciatte your feedback. You can submit a new issue.

Contribute

This is an opensource project, everyone can contribute and become a member of the community of Nateve.

Why be a member of the Nateve community?

1. A simple and understandable code

The source code of Adam is made with Python 3.8, a language easy to learn, also good practices are a priority for this project.

2. A great potencial

This project has a great potential to be the next programming language for education, to develop the quantum computing, and to develop the AI.

3. Simple

One of the main purposes of this programming language is to create an easy-to-learn language, which at the same time is capable of being used for many different purposes.

4. Respect for diversity

Everybody is welcome, it does not matter your genre, experience or nationality. Anyone with enthusiasm can be part of this project. Anyone from the most expert to the that is beginning to learn about programming, marketing, design, or any career.

How to start contributing?

There are multiply ways to contribute, since sharing this project, improving the brand of SigmaF, helping to solve the bugs or developing new features and making improves to the source code.

  • Share this project: You can put your star in the repository, use the topic nateve or talk about this project. You can use the hashtag #Nateve in Twitter, LinkedIn or any social network too.

  • Improve the brand of Nateve: If you are a marketer, designer or writer, and you want to help, you are welcome.

  • Help to solve the bugs: if you find one bug notify us an issue. On this we can all improve this language.

  • Developing new features: If you want to develop new features or making improvements to the project, you can do a fork to the dev branch (here are the ultimate develops) working there, and later do a pull request to dev branch in order to update Nateve.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nateve-0.0.1a0.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

nateve-0.0.1a0-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file nateve-0.0.1a0.tar.gz.

File metadata

  • Download URL: nateve-0.0.1a0.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for nateve-0.0.1a0.tar.gz
Algorithm Hash digest
SHA256 01e7219579d00a8eb359d62596db70c06f1cfb83c3f287637ab27691f1b5b540
MD5 1f43b963c94cd57f425623b488f19755
BLAKE2b-256 aafee2db9a9f02d4e1c1de786af592b74ac22fcdc9a9862f044e2365506c38ea

See more details on using hashes here.

File details

Details for the file nateve-0.0.1a0-py3-none-any.whl.

File metadata

  • Download URL: nateve-0.0.1a0-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.0

File hashes

Hashes for nateve-0.0.1a0-py3-none-any.whl
Algorithm Hash digest
SHA256 4e91cf691fcd134ccdcbda7eb1b11427e1aa8120cf11a9276efd0a47ff3320d6
MD5 f3c7abe7142c80c9ff17f42be7acfb50
BLAKE2b-256 0c815e19fc11b7a1c2626be3f0c53f927b45534136846afe78f0af29874c54dc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page