Skip to main content

Regular Expressions turbo-charged with notations for part-of-speech and dependency tree tags

Project description

Natural Language Expressions for Python

NatEx: Regular Expressions turbo-charged with notations for part-of-speech and dependency tree tags

In a Nutshell

from natex import natex

sentence = natex('Sloths eat steak in New York')

# check if string begins with noun:
sentence.match(r'@NOUN')
# returns <natex.Match object; span=(0, 6), match='Sloths'>

# find first occurrence of an adposition followed by a proper noun
sentence.search(r'@ADP <@PROPN>')  	
# returns <natex.Match object; span=(17, 28), match='in New York'>

# find all occurrences of nouns or proper nouns
sentence.findall(r'@(NOUN|PROPN)') 	
# returns ['Sloths', 'steak', 'New York']

# find all occurrences of nouns or proper nouns starting with an s (irregardless of casing)
sentence.findall(r's[^@]+@(NOUN|PROPN)', natex.I)
# returns ['Sloths', 'steak']

Goals & Design

The goal of NatEx is quick and simple parsing of tokens using their literal representation, part-of-speech, and dependency tree tags. Think of it as an extension of regular expressions for natural language processing. The generated part-of-speech and dependency tree tags are provided by stanza and merged into a string that can be searched through.

Why not Tregex, Semgrex, or Tsurgeon?

NatEx was designed primarily with simplicity in mind. Libraries like Tregex, Semgrex, or Tsurgeon may be able to match more complex patterns, but they have a steep learning curve and the patterns are hard to read. Plus NatEx is written for Python. It wraps the built-in re package with an abstraction layer and thus provides almost the same performance as any normal regex.

Examples

You can use it for simple tagging (NLU):

from natex import natex

sentence = natex('book flights from Munich to Chicago')
origin_location, destination_location = sentence.findall('<@PROPN>')
# origin_location ='Munich', destination_location = 'Chicago'

sentence = natex('I am being called Dan Borufka')
firstname, lastname = sentence.findall('<@PROPN>')
# firstname = 'Dan', lastname = 'Borufka'

sentence = natex('I need to go to Italy')
clause = sentence.search('<@ADP> <@PROPN>').match
# clause = 'to Italy'
destination = clause.split(' ')[1]

Or for simple response template generation (NLG):

from natex import natex

sentence = natex('Eat my shorts')

# look for token with imperative form
is_command = sentence.match(r'<!>')

if is_command:
	action_verb = sentence.search(r'<@VERB!>').lower()
	action_recipient = sentence.search(r'<#OBJ>')
	response = f'I will do my best to {action_verb} {action_recipient}!'

	# will contain 'I will do my best to eat shorts!'

Even more (random) examples:

from natex import natex

sentence = natex('Sloths eat steak in New York')

# find first occurrence of character sequence "ea" in nouns only
sentence.search(r'ea@NOUN')			
# returns <natex.Match object; span=(11, 16), match='steak'>

# find first occurrence of character sequence "ea"
sentence.search(r'ea')
# returns <natex.Match object; span=(7, 9), match='ea'>

# find all occurrences of nouns or proper nouns starting with a lowercase s
sentence.findall(r's[^@]+@(NOUN|PROPN)') 
# returns ['steak']

sentence = natex('Ein Hund isst keinen Gurkensalat in New York.', 'de')

# replace the nominal subject with the literal 'Affe'
sentence.sub(r'#NSUBJ', 'Affe')
# returns 'Ein Affe isst keinen Gurkensalat in New York.'

Check out test.py for some more examples!

Installation

Run:

pip install natex

Usage

NatEx provides the same API as the re package, but adds the following special characters:

Symbol Meaning Example pattern Meaning
< token boundary (opening) <New Find tokens starting with "New"
: either @ or # <:ADV Find tokens with e.g. universal POS "ADV" or dep. tree tag "ADVMOD"
@ part of speech tag @ADJ Find tokens that are adjectives
# dependency tree tag #OBJ Find the objects of the sentence
! imperative (mood) <!> Find any verbs that are in imperative form
> token boundary (closing) York> Find all tokens ending in "York"

If you combine features (e.g. seeking by part of speech and dependency tree simultaneously) make sure you provide them in the order of the table above.

✔ This will work:

natex('There goes a test sentence').findall(r'<@NOUN#OBJ>')

✘ But this won't:

natex('There goes a test sentence').findall(r'<#OBJ@NOUN>')

Calling the natex() function returns a NatEx instance. See API for a more detailed description. Just as the re.Match returning methods provided by Python's built-in re package, NatEx' equivalents will return a natex.Match object containing a span and a match property referring to position and substring of the sentence respectively.

Configuration

You can set the processing language of NatEx using the second parameter language_code (defaults to 'en'). It accepts a two-letter language-code, supporting all languages officially supported by stanza.

sentence = natex('Das Faultier isst keinen Gurkensalat', 'de')

When you run NatEx for the first time, it will check for the existence of the corresponding language models and download them if necessary. All subsequent calls to natex() will exclude that step.

API

The API is derived from Python's built-in re package:

NatEx

.match(pattern, flags)

Checks (from the beginning of the string) whether the sentence matches a pattern and returns a natex.Match object or None otherwise.

.search(pattern, flags) Returns a natex.Match object describing the first substring matching pattern.

.findall(pattern, flags) Returns all found strings matching pattern as a list.

.split(pattern, flags) Splits the sentence by all occurrences of the found pattern and returns a list of strings.

.sub(pattern, replacement, flags) Replaces all occurrences of the found pattern by replacement and returns the changed string.

Testing

You can use pytest in your terminal (simply type in pytest) to run the unit tests shipped with this package. Install it by running pip install pytest in your terminal.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

natex-1.0.5.tar.gz (9.3 kB view details)

Uploaded Source

Built Distributions

natex-1.0.5-py3.7.egg (15.4 kB view details)

Uploaded Source

natex-1.0.5-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file natex-1.0.5.tar.gz.

File metadata

  • Download URL: natex-1.0.5.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for natex-1.0.5.tar.gz
Algorithm Hash digest
SHA256 2a64189b5531b44c6ef190f4c690cef0b57ab9d602562f32414ac07392d1290f
MD5 d292b9e992f2ebe2bd464ae334dad46e
BLAKE2b-256 025fcc700ddd82f98017918a08cb5438e7cf58df8134a6a17f76811fa9179e6a

See more details on using hashes here.

File details

Details for the file natex-1.0.5-py3.7.egg.

File metadata

  • Download URL: natex-1.0.5-py3.7.egg
  • Upload date:
  • Size: 15.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for natex-1.0.5-py3.7.egg
Algorithm Hash digest
SHA256 0894b045b720dd455155db493e8301aa34ce0c5a12488eeefae99d4b1ed308f9
MD5 e75636f3e7cf1ea326034b91c1193eb7
BLAKE2b-256 c859358f98757e9702cc64fc316b91f4669272d99ea72c770a8fc19a2019cd67

See more details on using hashes here.

File details

Details for the file natex-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: natex-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 8.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for natex-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b48893e93885db2a037db45a56dd90ee644fde5098ca8deec1cccd9aa02ba083
MD5 69c133ce6ddcefb403c372655d7cf70c
BLAKE2b-256 7e8c5b66b893f32f42133651fc5e94714562747d437abce42fc48071dac47f48

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page