Skip to main content

A Tasty Python Binding with MeCab (FFI-based, no SWIG or compiler necessary)

Project description

What is natto-py?

A package leveraging FFI (foreign function interface), natto-py combines the Python programming language with MeCab, the part-of-speech and morphological analyzer for the Japanese language. No compiler is necessary, as it is not a C extension. natto-py will run on Mac OS, Windows and *nix.

You can learn more about natto-py at GitHub.

version travis pypi license

Requirements

natto-py requires the following:

The following Python versions are supported:

Installation

Install natto-py as you would any other Python package:

$ pip install natto-py

This will automatically install the cffi package, which natto-py uses to bind to the mecab library.

Automatic Configuration

As long as the mecab (and mecab-config for *nix and Mac OS) executables are on your PATH, natto-py does not require any explicit configuration.

  • On *nix and Mac OS, it queries mecab-config to discover the path to the libmecab.so or libmecab.dylib, respectively.

  • On Windows, it queries the Windows Registry to locate the MeCab installation folder.

  • In order to convert character encodings to/from Unicode, natto-py will examine the charset of the mecab system dictionary.

Explicit configuration via MECAB_PATH and MECAB_CHARSET

If natto-py for some reason cannot locate the mecab library, or if it cannot determine the correct charset used internally by mecab, then you will need to set the MECAB_PATH and MECAB_CHARSET environment variables.

  • Set the MECAB_PATH environment variable to the exact name/path to your mecab library.

  • Set the MECAB_CHARSET environment variable to the charset character encoding used by your system dictionary.

e.g., for Mac OS:

export MECAB_PATH=/usr/local/Cellar/mecab/0.996/lib/libmecab.dylib
export MECAB_CHARSET=utf8

e.g., for bash on UNIX/Linux:

export MECAB_PATH=/usr/local/lib/libmecab.so
export MECAB_CHARSET=euc-jp

e.g., on Windows:

set MECAB_PATH=C:\Program Files\MeCab\bin\libmecab.dll
set MECAB_CHARSET=shift-jis

e.g., from within a Python program:

import os

os.environ['MECAB_PATH']='/usr/local/lib/libmecab.so'
os.environ['MECAB_CHARSET']='utf-16'

Usage

Here’s a very quick guide to using natto-py.

Instantiate a reference to the mecab library, and display some details:

from natto import MeCab

nm = MeCab()
print(nm)

# displays details about the MeCab instance
<natto.mecab.MeCab
 model=<cdata 'mecab_model_t *' 0x801c16300>,
 tagger=<cdata 'mecab_t *' 0x801c17470>,
 lattice=<cdata 'mecab_lattice_t *' 0x801c196c0>,
 libpath="/usr/local/lib/libmecab.so",
 options={},
 dicts=[<natto.dictionary.DictionaryInfo
         dictionary='mecab_dictionary_info_t *' 0x801c19540>,
         filepath="/usr/local/lib/mecab/dic/ipadic/sys.dic",
         charset=utf8,
         type=0],
 version=0.996>

Display details about the mecab system dictionary used:

sysdic = nm.dicts[0]
print(sysdic)

# displays the MeCab system dictionary info
<natto.dictionary.DictionaryInfo
 dictionary='mecab_dictionary_info_t *' 0x801c19540>,
 filepath="/usr/local/lib/mecab/dic/ipadic/sys.dic",
 charset=utf8,
 type=0>

Parse Japanese text and send the MeCab result as a single string to stdout:

print(nm.parse('ピンチの時には必ずヒーローが現れる。'))

# MeCab result as a single string
ピンチ    名詞,一般,*,*,*,*,ピンチ,ピンチ,ピンチ
の      助詞,連体化,*,*,*,*,の,ノ,ノ
時      名詞,非自立,副詞可能,*,*,*,時,トキ,トキ
に      助詞,格助詞,一般,*,*,*,に,ニ,ニ
は      助詞,係助詞,*,*,*,*,は,ハ,ワ
必ず    副詞,助詞類接続,*,*,*,*,必ず,カナラズ,カナラズ
ヒーロー  名詞,一般,*,*,*,*,ヒーロー,ヒーロー,ヒーロー
が      助詞,格助詞,一般,*,*,*,が,ガ,ガ
現れる  動詞,自立,*,*,一段,基本形,現れる,アラワレル,アラワレル
。      記号,句点,*,*,*,*,。,。,。
EOS

Next, try parsing the text with MeCab node parsing. A generator yielding the MeCabNode instances lets you efficiently iterate over the output without first materializing each and every resulting MeCabNode instance. The MeCabNode instances yielded allow access to more detailed information about each morpheme.

Here we use a Python with-statement to automatically clean up after we finish node parsing with the MeCab tagger. This is the recommended approach for using natto-py in a production environment:

# Use a Python with-statement to ensure mecab_destroy is invoked
#
with MeCab() as nm:
    for n in nm.parse('ピンチの時には必ずヒーローが現れる。', as_nodes=True):
...     # ignore any end-of-sentence nodes
...     if not n.is_eos():
...         print('{}\t{}'.format(n.surface, n.cost))
...
ピンチ    3348
の        3722
時        5176
に        5083
は        5305
必ず    7525
ヒーロー   11363
が       10508
現れる   10841
。        7127

MeCab output formatting is extremely flexible and is highly recommended for any serious natural language processing task. Rather than parsing the MeCab output as a single, large string, use MeCab’s --node-format option (short form -F) to customize the node’s feature attribute.

  • morpheme surface

  • part-of-speech

  • part-of-speech ID

  • pronunciation

This example formats the node feature to capture the items above as a comma-separated value:

# MeCab options used:
#
# -F    ... short-form of --node-format
# %m    ... morpheme surface
# %f[0] ... part-of-speech
# %h    ... part-of-speech id (ipadic)
# %f[8] ... pronunciation
#
with MeCab('-F%m,%f[0],%h,%f[8]') as nm:
    for n in nm.parse('ピンチの時には必ずヒーローが現れる。', as_nodes=True):
...     # only normal nodes, ignore any end-of-sentence and unknown nodes
...     if n.is_nor():
...         print(n.feature)
...
ピンチ,名詞,38,ピンチ
の,助詞,24,ノ
時,名詞,66,トキ
に,助詞,13,ニ
は,助詞,16,ワ
必ず,副詞,35,カナラズ
ヒーロー,名詞,38,ヒーロー
が,助詞,13,ガ
現れる,動詞,31,アラワレル
。,記号,7,。

Partial parsing (制約付き解析), allows you to pass hints to MeCab on how to tokenize morphemes when parsing. Most useful are boundary constraint parsing and feature constraint parsing.

With boundary constraint parsing, you can specify either a compiled re regular expression object or a string to tell MeCab where the boundaries of a morpheme should be. Use the boundary_constraints keyword. For hints on tokenization, please see Regular expression operations and re.finditer in particular.

In this example below, we again use the -F short form of the --node-format option to capture the following in the node’s feature:

  • morpheme surface

  • node part-of-speech

  • node status value

Note that any such morphemes captured will have node stat status of 1 (unknown):

with MeCab('-F%m,\s%f[0],\s%s') as nm:

    text = '心の中で3回唱え、 ヒーロー見参!ヒーロー見参!ヒーロー見参!'
    pattern = 'ヒーロー見参'

    for n in nm.parse(text, boundary_constraints=pattern, as_nodes=True):
...     print(n.feature)
...
心, 名詞, 0
の, 助詞, 0
中, 名詞, 0
で, 助詞, 0
3, 名詞, 1
回, 名詞, 0
唱え, 動詞, 0
、, 記号, 0
ヒーロー見参, 名詞, 1
!, 記号, 0
ヒーロー見参, 名詞, 1
!, 記号, 0
ヒーロー見参, 名詞, 1
!, 記号, 0
EOS

Learn More

Contributing to natto-py

  • Use git and check out the latest code at GitHub to make sure the feature hasn’t been implemented or the bug hasn’t been fixed yet.

  • Browse the issue tracker to make sure someone already hasn’t requested it and/or contributed it.

  • Fork the project.

  • Start a feature/bugfix branch.

  • Commit and push until you are happy with your contribution.

  • Make sure to add tests for it. This is important so I don’t break it in a future version unintentionally. I use unittest as it is very natural and easy-to-use.

  • Please try not to mess with the setup.py, CHANGELOG, or version files. If you must have your own version, that is fine, but please isolate to its own commit so I can cherry-pick around it.

Changelog

Please see the CHANGELOG for the release history.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

natto-py-0.5.1.tar.gz (32.3 kB view details)

Uploaded Source

File details

Details for the file natto-py-0.5.1.tar.gz.

File metadata

  • Download URL: natto-py-0.5.1.tar.gz
  • Upload date:
  • Size: 32.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for natto-py-0.5.1.tar.gz
Algorithm Hash digest
SHA256 853f248b4c0d7bf34d4e5deeaa8db0959b6718d05d944903aef493dbc831a436
MD5 af9c1026f8606a889a6620ea156ccb95
BLAKE2b-256 f954ad2511771f0a4bf11305b91998c8cd18e2b0bd9efd6c9add26d802921977

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page