Tools for running evolutionary algorithm experiments
Project description
Natural Selection
,(*
@@
*@ @@% *@
*@ @@ %@ @
@@/ @@ @@ @@
@@@(,@( @/ @@@@@@@&@@@@@
@ @& @@ /@@@#
/@ @@ ,@@ @@
,@@ @@ @@ @
%@@@ @@ @@@@@@@@@@@@@
,, @ @@ @@ &@@@
%@@ @@ &@@ @@
@%@@ &@@ @
,@,%@@
@@@@@@
_ _
_ __ __ _| |_ _ _ _ __ __ _| |
| '_ \ / _` | __| | | | '__/ _` | |
| | | | (_| | |_| |_| | | | (_| | |
|_| |_|\__,_|\__|\__,_|_| \__,_|_|
_ _ _
___ ___| | ___ ___| |_(_) ___ _ __
/ __|/ _ \ |/ _ \/ __| __| |/ _ \| '_ \
\__ \ __/ | __/ (__| |_| | (_) | | | |
|___/\___|_|\___|\___|\__|_|\___/|_| |_|
by Zipfian Science
Python tools for creating and running Evolutionary Algorithm (EA) experiments by Zipfian Science.
Install
$ pip install natural-selection
And use
from natural_selection.genetic_algorithms import Gene, Chromosome, Individual, Island
from natural_selection.genetic_algorithms.utils.random_functions import random_int, random_gaussian
# Create a gene
g_1 = Gene(name="test_int", value=3, gene_max=10, gene_min=1, randomise_function=random_int)
g_2 = Gene(name="test_real", value=0.5, gene_max=1.0, gene_min=0.1, randomise_function=random_gaussian)
# Add a list of genes to a genome
gen = Chromosome([g_1, g_2])
# Next, create an individual to carry these genes and evaluate them
fitness_function = lambda island, individual, x, y: individual.chromosome[0].value * x + individual.chromosome[0].value * y
adam = Individual(fitness_function, name="Adam", chromosome=gen)
# Now we can create an island for running the evolutionary process
# Notice the fitness function parameters are given here.
params = dict()
params['x'] = 0.5
params['y'] = 0.2
isolated_island = Island(function_params=params)
# Using a single individual, we can create a new population
isolated_island.initialise(adam, population_size=5)
# And finally, we let the randomness of life do its thing: optimise
best_individual = isolated_island.evolve(n_generations=5)
# After running for a few generations, we have an individual with the highest fitness
fitness = best_individual.fitness
genes = best_individual.chromosome
for gene in genes:
print(gene.name, gene.value)
Release
- Date: 2022-03-13
- Version: 0.2.21
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
natural_selection-0.2.21.tar.gz
(27.8 kB
view hashes)