Skip to main content

A fast random number generator for python

Project description

nazo_rand

Inspired to write from Pyewacket

A fast random number generator for python

rand_int.choice(seq: list|Tuple) -> Any example:

from nazo_rand import choice
temp = [1,2,3,4,5,6]
choice(temp)

rand_int.randbelow(a: int) -> int example:

from nazo_rand import randbelow
randbelow(10)   # -> [0, 10)
randbelow(0)    # -> [0, 0) => 0
randbelow(-10)  # -> (-10, 0]

rand_int.randint(a: int , b: int) -> int example:

from nazo_rand import randint
randint(1, 10)   # -> [1, 10]
randint(10, 1)   # -> [1, 10]
randint(10, 10)  # -> [10, 10] => 10

rand_int.randrange(start: int , stop: int = 0 , step: int = 1 ) example:

from nazo_rand import randrange
randrange(10)           # -> [0, 10) by whole numbers
randrange(1, 10)        # -> [1, 10) by whole numbers
randrange(1, 10, 2)     # -> [1, 10) by 2, odd numbers
randrange(-10)          # -> [-10, 0) by 1
randrange(10, 1)        # -> [1, 10) by 1
randrange(10, 0, 2)     # -> [0, 10) by 2, even numbers
randrange(10, 10, 0)    # -> [10, 10) => 10

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nazo_rand-0.1.0.tar.gz (64.0 kB view details)

Uploaded Source

Built Distributions

nazo_rand-0.1.0-cp312-cp312-win_amd64.whl (90.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

nazo_rand-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (284.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nazo_rand-0.1.0-cp312-cp312-macosx_10_9_universal2.whl (116.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

nazo_rand-0.1.0-cp311-cp311-win_amd64.whl (90.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

nazo_rand-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (275.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nazo_rand-0.1.0-cp311-cp311-macosx_10_9_universal2.whl (116.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

nazo_rand-0.1.0-cp310-cp310-win_amd64.whl (90.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

nazo_rand-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nazo_rand-0.1.0-cp310-cp310-macosx_11_0_x86_64.whl (90.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

nazo_rand-0.1.0-cp39-cp39-win_amd64.whl (90.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

nazo_rand-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nazo_rand-0.1.0-cp39-cp39-macosx_11_0_x86_64.whl (90.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

nazo_rand-0.1.0-cp38-cp38-win_amd64.whl (90.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

nazo_rand-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (255.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nazo_rand-0.1.0-cp38-cp38-macosx_11_0_x86_64.whl (90.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

File details

Details for the file nazo_rand-0.1.0.tar.gz.

File metadata

  • Download URL: nazo_rand-0.1.0.tar.gz
  • Upload date:
  • Size: 64.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for nazo_rand-0.1.0.tar.gz
Algorithm Hash digest
SHA256 eae34259d98a041e2fca9535437c2aeaa1ded7060cb03344a4964b4d40be8cfc
MD5 c3e872757b64842b5808a2bc959ebd16
BLAKE2b-256 c8fd36eef7e8ebbd0cc63c36ce706d9fb3cbe390b09859580175df3dd62af378

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 68a0eee20fe1392a19628e5be248e89f0477144acc5a81ee4dd43228340c958e
MD5 656cf077a602b57ae8f80ce77e9fda81
BLAKE2b-256 5e1c01cde6a722dc6c1f0e841b98b8f037471897fa1b47c77b03d25e5b3b65a3

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0351c3366c03cd2f0fab2c9cbb6889db8e4e75c2c7d9251f4bc3b5692e8e0c4e
MD5 c439d5742e9416d494410b214f117901
BLAKE2b-256 4c00f9197c01075ad3b7028f92d5907dea531d65f0aae01fdd85c388ebf3d9b1

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 40744c72071013bc7d943176ec850772fab10cea302de4204d4299418624e899
MD5 100b0690aca0eaa408ea20967f0e9953
BLAKE2b-256 e217e6e5f1c532fb7d7f8aaf7dc47b87e0bf118af231e5a8cf3c581407f08e35

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 56c97f7efea30280e4206b5e989cf799d9002666cc407deef58881cc20caab5b
MD5 71686ef4a2bcd2c8da8a26606cc79eb4
BLAKE2b-256 13781a80dd8b579c34b1d9a1fcfb94079f0002f642ce567765cf7e6d91132a74

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72495e4d62e453ea6a5c1df10abf5f0025f939da7c77a44f73b637610d6ed512
MD5 ef20ad184a62afbc828bf549d2ea0706
BLAKE2b-256 e0eda83b418d8e9d02db44ba08988bce4e680656a1f1cfd87d93c66ec7fa6d1c

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 af07c3db37b8429a265500914a27d425b0ec07d53b155078b4ee3876559fb7b4
MD5 15c815d455e43d455db553e7085dbc3d
BLAKE2b-256 19bff4b3e1df2a0237c64e7d7b9c3e9ae6414f71ae1624299b97e6b6cac4b012

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e6c57d102c7f34b16393f35a7c6a4edb40b8a787a9ea68cb93a31c506d8d7134
MD5 792c330fdedf785eb95e1a5c76313292
BLAKE2b-256 13027dec54f02bfa20ae2b1d74a3f38675b024010be0509da8a464ba000f8954

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64ba8dcf8d17dba80f9fa03f3ca546bfc5c9598b07ebfcd177fed50109100e21
MD5 85d678f10d8c083d73dad9d84134280a
BLAKE2b-256 c3c4c6a438bdf8aff79cff3c97b28855ebe1f61966fe503c2595cbf131004d0b

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 7b803f435b10b958b162609c28ccdd478e5576278cc5e145b3b5c257605a26a4
MD5 a90ab38a5f773c898fcb27fa12602d11
BLAKE2b-256 2cfa68ec1be27f89cfc489a8292d57978ce6beb3cc77ba2055b54a55edd0da46

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nazo_rand-0.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 90.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for nazo_rand-0.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8aa5af359839adca54fdd06415a2aa982c6d651abdc217c2a6dd5961ce5e91f3
MD5 1e4f6f725ac4d4d9d103abbd5806363e
BLAKE2b-256 a32a2cc65d918eb8e60c9513e89f9e1a2ce7c6571ad01cfbc1d754b7b3cb58c6

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a35d113e4d101db7104b05c95211639dbb30c580521101464588ba0e07975224
MD5 878f2ab5325f90c77974eac010698858
BLAKE2b-256 b8eca3026b7f67aba2cf9b01ef9f5c09169b32f40b55a43780a3416cbe162ba8

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 ff2a7dab72ae03ec972ff2740841c69ec0c99b2cceb0d58c2931b9cf371d4a9c
MD5 a5cb725227944f4d1faa2d6eb92c6835
BLAKE2b-256 e5342c04d1988435d093e24c2c2254eb6c3dc42709fd5ea2203a819ecefb7ea1

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nazo_rand-0.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 90.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for nazo_rand-0.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 adbe573e79fcf5610e9f0835ca56a9add06bac5209ba74b150b0c8a06aef5774
MD5 d6265ddb5d69b7b7bfa95f9ca2888332
BLAKE2b-256 150e62b77b6611ee195487536e27aa0051115c34dc71f4d5de641d3b2f55b407

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f5c57ff05b6789e2a1c9dbe38118aafb49b72e50b29b022f67b2bf4e8d4cdf3
MD5 904707a6592356b9f01f4922a5f3ef67
BLAKE2b-256 7b9c902e4873df7991c2abb006a9326e4fe0b4f0b987d9a5908cfe59d67a599d

See more details on using hashes here.

File details

Details for the file nazo_rand-0.1.0-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for nazo_rand-0.1.0-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 99346326d4f93042464c3029f2cf48f056ad93d56aab6d7b5ac789323ba365ea
MD5 3b4e6388a4f02769436c3ed6ed138f8e
BLAKE2b-256 0e25c70caf00c4695ef6fbcc3b4027231cc3d30f81074d9ddb45b0fd5ed126e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page