Python SIEM Query Utils nbdev edition
Project description
SIEM Query Utils
Install
Below is how to install in a plain python 3.11+ environment
pip install nbdev-squ
The installation can also be run in a notebook (we tend to use
JupyterLab Desktop
for local dev). The SQU_CONFIG
env var indicates to nbdev_squ it
should load the json secret squconfig-my_keyvault_tenantid
from the
my_kevault_name
keyvault.
%pip install nbdev-squ
import os; os.environ["SQU_CONFIG"] = "{{ my_keyvault_name }}/{{ my_keyvault_tenantid }}"
from nbdev_squ import api
# do cool notebook stuff with api
Security considerations
The contents of the keyvault secret are loaded into memory and cached in the user_cache_dir which should be a temporary secure directory restricted to the single user. Please ensure that the system this library is used on disallows access and/or logging of the user cache directory to external locations, and is on an encrypted disk (a common approach is to use isolated VMs and workstations for sensitive activities).
How to use
Note: If you create/use a Github Codespace on any of the wagov repos, SQU_CONFIG should be configured automatically.
Before using, config needs to be loaded into squ.core.cache
, which can
be done automatically from json in a keyvault by setting the env var
SQU_CONFIG
to "keyvault/tenantid"
.
export SQU_CONFIG="{{ keyvault }}/{{ tenantid }}"
Can be done in python before import from nbdev_squ as well:
import os; os.environ["SQU_CONFIG"] = "{{ keyvault }}/{{ tenantid }}"
from nbdev_squ import api
import io, pandas
# Load workspace info from datalake blob storage
df = api.list_workspaces(fmt="df"); print(df.shape)
# Load workspace info from introspection of azure graph
df = api.list_securityinsights(); print(df.shape)
# Kusto query to Sentinel workspaces via Azure Lighthouse
df = api.query_all("SecurityIncident | take 20", fmt="df"); print(df.shape)
# Kusto queries to Sentinel workspaces via Azure Lighthouse (batches up to 100 queries at a time)
df = api.query_all(["SecurityAlert | take 20" for a in range(10)]); print(df.shape)
# Kusto query to ADX
#df = api.adxtable2df(api.adx_query("kusto query | take 20"))
# General azure cli cmd
api.azcli(["config", "set", "extension.use_dynamic_install=yes_without_prompt"])
print(len(api.azcli(["account", "list"])))
# Various pre-configured api clients
# RunZero
response = api.clients.runzero.get("/export/org/assets.csv", params={"search": "has_public:t AND alive:t AND (protocol:rdp OR protocol:vnc OR protocol:teamviewer OR protocol:telnet OR protocol:ftp)"})
pandas.read_csv(io.StringIO(response.text)).head(10)
# Jira
pandas.json_normalize(api.clients.jira.jql("updated > -1d")["issues"]).head(10)
# AbuseIPDB
api.clients.abuseipdb.check_ip("1.1.1.1")
# TenableIO
pandas.DataFrame(api.clients.tio.scans.list()).head(10)
badips_df = api.query_all("""
SecurityIncident
| where Classification == "TruePositive"
| mv-expand AlertIds
| project tostring(AlertIds)
| join SecurityAlert on $left.AlertIds == $right.SystemAlertId
| mv-expand todynamic(Entities)
| project Entities.Address
| where isnotempty(Entities_Address)
| distinct tostring(Entities_Address)
""", timespan=pandas.Timedelta("45d"))
df = api.query_all("find where ClientIP startswith '172.16.' | evaluate bag_unpack(pack_) | take 40000")
df = api.query_all("""union withsource="_table" *
| extend _ingestion_time_bin = bin(ingestion_time(), 1h)
| summarize take_any(*) by _table, _ingestion_time_bin
| project pack=pack_all(true)""")
import json
pandas.DataFrame(list(df["pack"].apply(json.loads)))
Secrets template
The below json can be used as a template for saving your own json into
my_keyvault_name
/squconfig-my_keyvault_tenantid
to use with this
library:
{
"config_version": "20240101 - added ??? access details",
"datalake_blob_prefix": "https://???/???",
"datalake_subscription": "???",
"datalake_account": "???.blob.core.windows.net",
"datalake_container": "???",
"kql_baseurl": "https://raw.githubusercontent.com/???",
"azure_dataexplorer": "https://???.???.kusto.windows.net/???",
"tenant_id": "???",
"jira_url": "https://???.atlassian.net",
"jira_username": "???@???",
"jira_password": "???",
"runzero_apitoken": "???",
"abuseipdb_api_key": "???",
"tenable_access_key": "???",
"tenable_secret_key": "???",
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file nbdev-squ-1.3.4.tar.gz
.
File metadata
- Download URL: nbdev-squ-1.3.4.tar.gz
- Upload date:
- Size: 510.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8eb0d3313d5006b3c57b333e7421f2e58defbd97db2fbb8cdaf91b55faa94be5 |
|
MD5 | 1f08d5ebc8be2e09b0eff26f76484b9b |
|
BLAKE2b-256 | e496129a46298180e4b15d95071092e2a586e53818ba3c1749da363880a0215d |
File details
Details for the file nbdev_squ-1.3.4-py3-none-any.whl
.
File metadata
- Download URL: nbdev_squ-1.3.4-py3-none-any.whl
- Upload date:
- Size: 266.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 719dff62ac19d49fb13f250e3e6281e9c7d86c4e4e96484353c557bc1bfd77c8 |
|
MD5 | b68be0c94e9adb97615d8846c02c65fe |
|
BLAKE2b-256 | 12ca0cbf7186a1fead567f8e765a7c1cf1f29e6efc03a75a4b5e2214516318bb |