N-Beats
Project description
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
- Implementation in Keras by @eljdos (Jean-Sébastien Dhr)
- Implementation in Pytorch by @philipperemy (Philippe Remy)
- https://arxiv.org/abs/1905.10437
N-Beats at the beginning of the training
Trust me, after a few more steps, the green curve (predictions) matches the ground truth exactly :-)
Installation
From PyPI
Install Keras: pip install nbeats-keras
.
Install Pytorch: pip install nbeats-pytorch
.
From the sources
Installation is based on a MakeFile. Make sure you are in a virtualenv and have python3 installed.
Command to install N-Beats with Keras: make install-keras
Command to install N-Beats with Pytorch: make install-pytorch
Run on the GPU
To force the utilization of the GPU (Tensorflow), run: pip uninstall -y tensorflow && pip install tensorflow-gpu
.
Example
Jupyter notebook: NBeats.ipynb: make run-jupyter
.
Here is a toy example on how to use this model (train and predict):
import warnings
import numpy as np
from nbeats_keras.model import NBeatsNet as NBeatsKeras
from nbeats_pytorch.model import NBeatsNet as NBeatsPytorch
warnings.filterwarnings(action='ignore', message='Setting attributes')
def main():
# https://keras.io/layers/recurrent/
num_samples, time_steps, input_dim, output_dim = 50_000, 10, 1, 1
# Definition of the model.
model_keras = NBeatsKeras(backcast_length=time_steps, forecast_length=output_dim,
stack_types=(NBeatsKeras.GENERIC_BLOCK, NBeatsKeras.GENERIC_BLOCK),
nb_blocks_per_stack=2, thetas_dim=(4, 4), share_weights_in_stack=True,
hidden_layer_units=64)
model_pytorch = NBeatsPytorch(backcast_length=time_steps, forecast_length=output_dim,
stack_types=(NBeatsPytorch.GENERIC_BLOCK, NBeatsPytorch.GENERIC_BLOCK),
nb_blocks_per_stack=2, thetas_dim=(4, 4), share_weights_in_stack=True,
hidden_layer_units=64)
# Definition of the objective function and the optimizer.
model_keras.compile(loss='mae', optimizer='adam')
model_pytorch.compile(loss='mae', optimizer='adam')
# Definition of the data. The problem to solve is to find f such as | f(x) - y | -> 0.
# where f = np.mean.
x = np.random.uniform(size=(num_samples, time_steps, input_dim))
y = np.mean(x, axis=1, keepdims=True)
# Split data into training and testing datasets.
c = num_samples // 10
x_train, y_train, x_test, y_test = x[c:], y[c:], x[:c], y[:c]
test_size = len(x_test)
# Train the model.
print('Keras training...')
model_keras.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=20, batch_size=128)
print('Pytorch training...')
model_pytorch.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=20, batch_size=128)
# Save the model for later.
model_keras.save('n_beats_model.h5')
model_pytorch.save('n_beats_pytorch.th')
# Predict on the testing set (forecast).
predictions_keras_forecast = model_keras.predict(x_test)
predictions_pytorch_forecast = model_pytorch.predict(x_test)
np.testing.assert_equal(predictions_keras_forecast.shape, (test_size, model_keras.forecast_length, output_dim))
np.testing.assert_equal(predictions_pytorch_forecast.shape, (test_size, model_pytorch.forecast_length, output_dim))
# Predict on the testing set (backcast).
predictions_keras_backcast = model_keras.predict(x_test, return_backcast=True)
predictions_pytorch_backcast = model_pytorch.predict(x_test, return_backcast=True)
np.testing.assert_equal(predictions_keras_backcast.shape, (test_size, model_keras.backcast_length, output_dim))
np.testing.assert_equal(predictions_pytorch_backcast.shape, (test_size, model_pytorch.backcast_length, output_dim))
# Load the model.
model_keras_2 = NBeatsKeras.load('n_beats_model.h5')
model_pytorch_2 = NBeatsPytorch.load('n_beats_pytorch.th')
np.testing.assert_almost_equal(predictions_keras_forecast, model_keras_2.predict(x_test))
np.testing.assert_almost_equal(predictions_pytorch_forecast, model_pytorch_2.predict(x_test))
if __name__ == '__main__':
main()
Citation
@misc{NBeatsPRemy,
author = {Philippe Remy},
title = {N-BEATS: Neural basis expansion analysis for interpretable time series forecasting},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/philipperemy/n-beats}},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for nbeats_keras-1.4.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 83a90f578c57f83350f2edff4d09812b19a2664370e3d97a62eac6c4abe53832 |
|
MD5 | 4e14775f56c9ee15d51c467406f0cbaf |
|
BLAKE2b-256 | 4325633a6da50bca75cccd68bbc9472f907e91eabc826628c4f872f307e723c0 |