Skip to main content

Fast Experiment Conductor

Project description

Fast Experiment Conductor

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nblab-1.0.2-cp312-cp312-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

nblab-1.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nblab-1.0.2-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

nblab-1.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nblab-1.0.2-cp310-cp310-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

nblab-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nblab-1.0.2-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

nblab-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nblab-1.0.2-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

nblab-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file nblab-1.0.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: nblab-1.0.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for nblab-1.0.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 73c7e714899ed34f431cfe8ba5f3a28ca9211e24ab79cf7b491dbc5c7500e0aa
MD5 deb61e9f75d10b06ef772ac820ee418f
BLAKE2b-256 f8eb3ab85d2305939efddfb90bb716edbd737c27604a57929506d7d05c7c78bb

See more details on using hashes here.

File details

Details for the file nblab-1.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nblab-1.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5c0019f325d5232a0f1a663af89155b691eaabcc88ff53e14a564b492b2cc58
MD5 685e9af6f12fbfe7ef39509c7afb16c5
BLAKE2b-256 43cd07f344d99a09277406d21c50e12d9d001589c14e9b7b5b49dbd576921ee9

See more details on using hashes here.

File details

Details for the file nblab-1.0.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nblab-1.0.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for nblab-1.0.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a3a4d797d36311be3864ff0144756006a7c931c438938d4c0ac80ce27f0838cb
MD5 50d74c0a81b2d05e2a1a09c747790ed6
BLAKE2b-256 d022e20fe1749d09960758bb03422abd9bb50a52e4247506614c6e15a38b7c02

See more details on using hashes here.

File details

Details for the file nblab-1.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nblab-1.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac24faabe23223da7a8c07b096689a4894dcc50d6a82b4a9bd8fa15849de6cde
MD5 088574149edd628476097a7b3ede07fe
BLAKE2b-256 e36f5e5b9b63b16e37aebecac19cea30c94fe5df6695674a307cec1ff150c4c1

See more details on using hashes here.

File details

Details for the file nblab-1.0.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nblab-1.0.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for nblab-1.0.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a7944ce455cd64f6f6cdcd7f9c6db192e2af11d02ac23cab56d137f0d9a8e941
MD5 cf4c5af248557d5de196ad2264ec9772
BLAKE2b-256 f05b22944ba99c006bf17d058d2d7c41ee0c22bf50111e08ca858a06ab06e477

See more details on using hashes here.

File details

Details for the file nblab-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nblab-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b0de760a4aa3c17c06c8bc3adbaa9070545a405b2fc7600963b7af0fcddbb47
MD5 32b048bf48713159a020ae28350f1291
BLAKE2b-256 435972252b9e09b57cbe4fddc405622e8de1fa2fb1dac44c46a138db70e9b5af

See more details on using hashes here.

File details

Details for the file nblab-1.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nblab-1.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for nblab-1.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8583991dc544bfdb283634fd6d5f289e3014cde7b3ce3169f5afdf41c2879518
MD5 c5aee2e6b79a60c65af967f74d76fed7
BLAKE2b-256 64847c6c684208c701a711caf1548d8395010dc70a76569c3b04693e60d96664

See more details on using hashes here.

File details

Details for the file nblab-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nblab-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97f62e401c628de5305f82b4a3cb15f607f53d15f673234afb7773b098ddafae
MD5 19d5aac063fc0b95c4bc280f2207f581
BLAKE2b-256 8b4f55034a90c25b832ca380ecdb97f54a6898892e78a27a4768b31295ecaf7b

See more details on using hashes here.

File details

Details for the file nblab-1.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nblab-1.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for nblab-1.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ba40f56a98129c57ac27fe19c9ec3dac3255c3c36555a3b758de25f86894e617
MD5 6e58551ea03315e57291d85729bef076
BLAKE2b-256 d47a04b5d42f9c8e5abba38657a6f806329b4ea386f85c3a825a791cdbf9aca6

See more details on using hashes here.

File details

Details for the file nblab-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nblab-1.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d64ab7299176ef04d49362bea653a0c4acf19b6c982457c5b4a302a90cd6eb68
MD5 f91f8189196576840d325e47d0bdfc48
BLAKE2b-256 3747764b109dd8fbf911c6d8d9ba23c95dab6fd74691cec3766a028586644b03

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page