Skip to main content

nb is nerual network builder for quick network prototyping

Project description

NB

Please install nb with pip install nbnb, the nb name was taken already, so we using nbnb instead!

Neural Network Blocks (aka: NB, or neural network builder). This library provides massive fancy blocks for you to quick build your powerful networks! Some SOTA tricks and connections such as CSP, ASFF, Attention, BaseConv, Hardswish, Mish all included for quick prototype your model. This is an Arsenal for deeplearning forge.

nb is an idea comes from engineering, we build model with some common blocks, we exploring new ideas with SOTA tricks, but all those thing can be gathered into one single place, and for model quick design and prototyping.

this project is under construct for now, I will update it quickly once I found some new blocks that really works in model. And you are very welcome to send me a pull request and add more features!

Updates

  • 2022.06.29: Now we add EfficientFormer (unofficial) support! Also, inside YOLOv7, will have a detection model trained with EfficientFormer-L1;
  • 2022.06.27: Now we add MobileOne backbone support!
  • 2021.03.16: Added some blocks used inside Scaled-YoloV4 (P5,P6,P7). List are:
    • HarDBlock;
    • SPPCSP;
    • VoVCSP;

Install

nb can be installed from PIP, remember the name is nbnb:

sudo pip3 install nbnb

Usage

Here is an example of using NB to build YoloV5!

updates: We have another YoloV5-ASFF version added in example!

import torch
from torch import nn
from nb.torch.blocks.bottleneck_blocks import SimBottleneckCSP
from nb.torch.blocks.trans_blocks import Focus
from nb.torch.blocks.head_blocks import SPP
from nb.torch.blocks.conv_blocks import ConvBase
from nb.torch.utils import device

class YoloV5(nn.Module):

    def __init__(self, num_cls=80, ch=3, anchors=None):
        super(YoloV5, self).__init__()
        assert anchors != None, 'anchor must be provided'

        # divid by
        cd = 2
        wd = 3

        self.focus = Focus(ch, 64//cd)
        self.conv1 = ConvBase(64//cd, 128//cd, 3, 2)
        self.csp1 = SimBottleneckCSP(128//cd, 128//cd, n=3//wd)
        self.conv2 = ConvBase(128//cd, 256//cd, 3, 2)
        self.csp2 = SimBottleneckCSP(256//cd, 256//cd, n=9//wd)
        self.conv3 = ConvBase(256//cd, 512//cd, 3, 2)
        self.csp3 = SimBottleneckCSP(512//cd, 512//cd, n=9//wd)
        self.conv4 = ConvBase(512//cd, 1024//cd, 3, 2)
        self.spp = SPP(1024//cd, 1024//cd)
        self.csp4 = SimBottleneckCSP(1024//cd, 1024//cd, n=3//wd, shortcut=False)

        # PANet
        self.conv5 = ConvBase(1024//cd, 512//cd)
        self.up1 = nn.Upsample(scale_factor=2)
        self.csp5 = SimBottleneckCSP(1024//cd, 512//cd, n=3//wd, shortcut=False)

        self.conv6 = ConvBase(512//cd, 256//cd)
        self.up2 = nn.Upsample(scale_factor=2)
        self.csp6 = SimBottleneckCSP(512//cd, 256//cd, n=3//wd, shortcut=False)

        self.conv7 = ConvBase(256//cd, 256//cd, 3, 2)
        self.csp7 = SimBottleneckCSP(512//cd, 512//cd, n=3//wd, shortcut=False)

        self.conv8 = ConvBase(512//cd, 512//cd, 3, 2)
        self.csp8 = SimBottleneckCSP(512//cd, 1024//cd, n=3//wd, shortcut=False)

    def _build_backbone(self, x):
        x = self.focus(x)
        x = self.conv1(x)
        x = self.csp1(x)
        x_p3 = self.conv2(x)  # P3
        x = self.csp2(x_p3)
        x_p4 = self.conv3(x)  # P4
        x = self.csp3(x_p4)
        x_p5 = self.conv4(x)  # P5
        x = self.spp(x_p5)
        x = self.csp4(x)
        return x_p3, x_p4, x_p5, x

    def _build_head(self, p3, p4, p5, feas):
        h_p5 = self.conv5(feas)  # head P5
        x = self.up1(h_p5)
        x_concat = torch.cat([x, p4], dim=1)
        x = self.csp5(x_concat)

        h_p4 = self.conv6(x)  # head P4
        x = self.up2(h_p4)
        x_concat = torch.cat([x, p3], dim=1)
        x_small = self.csp6(x_concat)

        x = self.conv7(x_small)
        x_concat = torch.cat([x, h_p4], dim=1)
        x_medium = self.csp7(x_concat)

        x = self.conv8(x_medium)
        x_concat = torch.cat([x, h_p5], dim=1)
        x_large = self.csp8(x)
        return x_small, x_medium, x_large

    def forward(self, x):
        p3, p4, p5, feas = self._build_backbone(x)
        xs, xm, xl = self._build_head(p3, p4, p5, feas)
        return xs, xm, xl

A simple example to build a layer of conv:

from nb.torch.base.conv_block import ConvBase
a = ConvBase(128, 256, 3, 1, 2, norm_cfg=dict(type="BN"), act_cfg=dict(type="Hardswish"))

Be note that, the reason for us using cfg to specific norm and activation is for users dynamically switch their configuration of model in yaml format rather than hard code it.

RoadMap

  • More Transformers backbone;
  • Favor of more light-weighted but powerful models;
  • Pull request are very welcomed!

Copyright

Lucas Jin @2022 all rights reserved.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nbnb-0.1.4.tar.gz (43.6 kB view details)

Uploaded Source

File details

Details for the file nbnb-0.1.4.tar.gz.

File metadata

  • Download URL: nbnb-0.1.4.tar.gz
  • Upload date:
  • Size: 43.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nbnb-0.1.4.tar.gz
Algorithm Hash digest
SHA256 d0516bfc24b0804238f2d3ca74871f9886e8c53060034c4e53a268608ea80e91
MD5 c6905aace0328e9e18326ce9e52dc42e
BLAKE2b-256 fe1cbbaae457f8f7bd56cccd8a42d251d5cda92e52b4714421fe2c35b6a51204

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page