Named Concept Gene Ontology Concept Recognition
Project description
# NCGOCR
[![](https://img.shields.io/travis/jeroyang/ncgocr.svg)](https://travis-ci.org/jeroyang/ncgocr)
[![](https://img.shields.io/pypi/v/ncgocr.svg)](https://pypi.python.org/pypi/ncgocr)
- Named Concept Gene Ontology Concept Recognition
- Automatic recognize Gene Ontology (GO) concepts from context.
## Installation
Using 'pip' to install the Python module
```bash
$ pip install -U ncgocr
```
## Usage
```python
from ncgocr import Craft, GoData, NCGOCR, Corpus, evaluate
craft = Craft('data')
corpus = craft.get_corpus()
goldstandard = craft.get_goldstandard()
print('Loading GO...')
godata = GoData('data/craft-1.0/ontologies/GO.obo')
print('Initiating NCGOCR...')
ncgocr = NCGOCR(godata)
print('Training the model...')
ncgocr.train(corpus, goldstandard)
print('Loading the testing corpus...')
corpus_name = 'testing corpus'
testing_corpus = Corpus.from_dir('data/craft-1.0/articles/txt/', corpus_name)
print('predicting the results...')
result = ncgocr.process(testing_corpus)
print('Show the first 10 results...')
print(result.to_list()[:10])
print('Evaluate the results...')
report = evaluate(result, goldstandard, 'Using the training corpus as the testing corpus')
print(report)
```
## License
* Free software: MIT license
[![](https://img.shields.io/travis/jeroyang/ncgocr.svg)](https://travis-ci.org/jeroyang/ncgocr)
[![](https://img.shields.io/pypi/v/ncgocr.svg)](https://pypi.python.org/pypi/ncgocr)
- Named Concept Gene Ontology Concept Recognition
- Automatic recognize Gene Ontology (GO) concepts from context.
## Installation
Using 'pip' to install the Python module
```bash
$ pip install -U ncgocr
```
## Usage
```python
from ncgocr import Craft, GoData, NCGOCR, Corpus, evaluate
craft = Craft('data')
corpus = craft.get_corpus()
goldstandard = craft.get_goldstandard()
print('Loading GO...')
godata = GoData('data/craft-1.0/ontologies/GO.obo')
print('Initiating NCGOCR...')
ncgocr = NCGOCR(godata)
print('Training the model...')
ncgocr.train(corpus, goldstandard)
print('Loading the testing corpus...')
corpus_name = 'testing corpus'
testing_corpus = Corpus.from_dir('data/craft-1.0/articles/txt/', corpus_name)
print('predicting the results...')
result = ncgocr.process(testing_corpus)
print('Show the first 10 results...')
print(result.to_list()[:10])
print('Evaluate the results...')
report = evaluate(result, goldstandard, 'Using the training corpus as the testing corpus')
print(report)
```
## License
* Free software: MIT license
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ncgocr-1.0.2.tar.gz
(3.7 MB
view details)
Built Distribution
ncgocr-1.0.2-py3-none-any.whl
(78.8 kB
view details)
File details
Details for the file ncgocr-1.0.2.tar.gz
.
File metadata
- Download URL: ncgocr-1.0.2.tar.gz
- Upload date:
- Size: 3.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 29b4ab29474d07c1779c56bf51b1cc553b9e7bc9db06740fd12106b28af432b0 |
|
MD5 | f59fcfca3ceca469c9db9b70274402e8 |
|
BLAKE2b-256 | 25bdd78c8f72bd65acba797906c802224404f53adf3f26afc3d6a99cf5ba9ef0 |
File details
Details for the file ncgocr-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: ncgocr-1.0.2-py3-none-any.whl
- Upload date:
- Size: 78.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d6ed959b747be4fbf3281c4984e5d40ad65b9ee22aa551468591bbafb870c042 |
|
MD5 | effe7da0da5a16197618eca6ced62497 |
|
BLAKE2b-256 | fe371d063d20311e213f55bffe093656f6bf8ad70712e0deaa5f2d60e927806b |