Skip to main content

A fast interval tree-like implementation in C, wrapped for the Python ecosystem.

Project description

Nested containment list

Build Status PyPI version

The Nested Containment List is a datastructure for interval overlap queries, like the interval tree. It is usually an order of magnitude faster than the interval tree both for building and query lookups.

The implementation here is a revived version of the one used in the now defunct PyGr library, which died of bitrot. I have made it less memory-consuming and created wrapper functions which allows batch-querying the NCLS for further speed gains.

It was implemented to be the cornerstone of the PyRanges project, but I have made it available to the Python community as a stand-alone library. Enjoy.

Original Paper: https://academic.oup.com/bioinformatics/article/23/11/1386/199545 Cite: http://dx.doi.org/10.1093/bioinformatics/btz615

Cite

If you use this library in published research cite

http://dx.doi.org/10.1093/bioinformatics/btz615

Install

pip install ncls

Usage

from ncls import NCLS

import pandas as pd

starts = pd.Series(range(0, 5))
ends = starts + 100
ids = starts

subject_df = pd.DataFrame({"Start": starts, "End": ends}, index=ids)

print(subject_df)
#    Start  End
# 0      0  100
# 1      1  101
# 2      2  102
# 3      3  103
# 4      4  104

ncls = NCLS(starts.values, ends.values, ids.values)

# python API, slower
it = ncls.find_overlap(0, 2)
for i in it:
    print(i)
# (0, 100, 0)
# (1, 101, 1)

starts_query = pd.Series([1, 3])
ends_query = pd.Series([52, 14])
indexes_query = pd.Series([10000, 100])

query_df = pd.DataFrame({"Start": starts_query.values, "End": ends_query.values}, index=indexes_query.values)

query_df
#        Start  End
# 10000      1   52
# 100        3   14


# everything done in C/Cython; faster
l_idxs, r_idxs = ncls.all_overlaps_both(starts_query.values, ends_query.values, indexes_query.values)
l_idxs, r_idxs
# (array([10000, 10000, 10000, 10000, 10000,   100,   100,   100,   100,
#          100]), array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4]))

print(query_df.loc[l_idxs])
#        Start  End
# 10000      1   52
# 10000      1   52
# 10000      1   52
# 10000      1   52
# 10000      1   52
# 100        3   14
# 100        3   14
# 100        3   14
# 100        3   14
# 100        3   14
print(subject_df.loc[r_idxs])
#    Start  End
# 0      0  100
# 1      1  101
# 2      2  102
# 3      3  103
# 4      4  104
# 0      0  100
# 1      1  101
# 2      2  102
# 3      3  103
# 4      4  104

# return intervals in python (slow/mem-consuming)
intervals = ncls.intervals()
intervals
# [(0, 100, 0), (1, 101, 1), (2, 102, 2), (3, 103, 3), (4, 104, 4)]

There is also an experimental floating point version of the NCLS called FNCLS. See the examples folder.

Benchmark

Test file of 100 million intervals (created by subsetting gencode gtf with replacement):

Library Function Time (s) Memory (GB)
bx-python build 161.7 2.5
ncls build 3.15 0.5
bx-python overlap 148.4 4.3
ncls overlap 7.2 0.5

Building is 50 times faster and overlap queries are 20 times faster. Memory usage is one fifth and one ninth.

Original paper

Alexander V. Alekseyenko, Christopher J. Lee; Nested Containment List (NCList): a new algorithm for accelerating interval query of genome alignment and interval databases, Bioinformatics, Volume 23, Issue 11, 1 June 2007, Pages 1386–1393, https://doi.org/10.1093/bioinformatics/btl647

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncls-0.0.68.tar.gz (483.1 kB view details)

Uploaded Source

Built Distributions

ncls-0.0.68-pp39-pypy39_pp73-win_amd64.whl (734.0 kB view details)

Uploaded PyPy Windows x86-64

ncls-0.0.68-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (824.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

ncls-0.0.68-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (822.9 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

ncls-0.0.68-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (762.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

ncls-0.0.68-pp38-pypy38_pp73-win_amd64.whl (734.6 kB view details)

Uploaded PyPy Windows x86-64

ncls-0.0.68-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (835.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

ncls-0.0.68-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (826.9 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

ncls-0.0.68-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (761.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

ncls-0.0.68-pp37-pypy37_pp73-win_amd64.whl (734.9 kB view details)

Uploaded PyPy Windows x86-64

ncls-0.0.68-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (835.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

ncls-0.0.68-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (827.5 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

ncls-0.0.68-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (761.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

ncls-0.0.68-cp311-cp311-win_amd64.whl (763.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

ncls-0.0.68-cp311-cp311-win32.whl (725.7 kB view details)

Uploaded CPython 3.11 Windows x86

ncls-0.0.68-cp311-cp311-musllinux_1_1_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

ncls-0.0.68-cp311-cp311-musllinux_1_1_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

ncls-0.0.68-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ncls-0.0.68-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

ncls-0.0.68-cp311-cp311-macosx_10_9_x86_64.whl (850.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

ncls-0.0.68-cp310-cp310-win_amd64.whl (765.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

ncls-0.0.68-cp310-cp310-win32.whl (727.5 kB view details)

Uploaded CPython 3.10 Windows x86

ncls-0.0.68-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

ncls-0.0.68-cp310-cp310-musllinux_1_1_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

ncls-0.0.68-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ncls-0.0.68-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

ncls-0.0.68-cp310-cp310-macosx_10_9_x86_64.whl (855.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

ncls-0.0.68-cp39-cp39-win_amd64.whl (772.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

ncls-0.0.68-cp39-cp39-win32.whl (738.2 kB view details)

Uploaded CPython 3.9 Windows x86

ncls-0.0.68-cp39-cp39-musllinux_1_1_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

ncls-0.0.68-cp39-cp39-musllinux_1_1_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

ncls-0.0.68-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ncls-0.0.68-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

ncls-0.0.68-cp39-cp39-macosx_10_9_x86_64.whl (865.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

ncls-0.0.68-cp38-cp38-win_amd64.whl (773.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

ncls-0.0.68-cp38-cp38-win32.whl (738.2 kB view details)

Uploaded CPython 3.8 Windows x86

ncls-0.0.68-cp38-cp38-musllinux_1_1_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

ncls-0.0.68-cp38-cp38-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

ncls-0.0.68-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ncls-0.0.68-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

ncls-0.0.68-cp38-cp38-macosx_10_9_x86_64.whl (852.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

ncls-0.0.68-cp37-cp37m-win_amd64.whl (767.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

ncls-0.0.68-cp37-cp37m-win32.whl (731.8 kB view details)

Uploaded CPython 3.7m Windows x86

ncls-0.0.68-cp37-cp37m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

ncls-0.0.68-cp37-cp37m-musllinux_1_1_i686.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

ncls-0.0.68-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ncls-0.0.68-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

ncls-0.0.68-cp37-cp37m-macosx_10_9_x86_64.whl (851.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file ncls-0.0.68.tar.gz.

File metadata

  • Download URL: ncls-0.0.68.tar.gz
  • Upload date:
  • Size: 483.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ncls-0.0.68.tar.gz
Algorithm Hash digest
SHA256 81aaa5abb123bb21797ed2f8ef921e20222db14a3ecbc61ccf447532f2b7ba93
MD5 12c1b073e45d980dc8221d004fb419c4
BLAKE2b-256 88b8210d5cb1fa85c7675323aacbd52af11553dc190aad1c15584699f40797f1

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6a69a75d74bbfd0594c1e0b5c8e50abb1375427374cc058f92010c9cc5855306
MD5 01333e6a66aa9051acfbee88aeaff8bc
BLAKE2b-256 a8fa1180972af03e957038528266028c7f70c119f92eda43e1e936878227261e

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 48f81075b95c78bff50bc7fc123a4a88bbeacbf0294dab36b2cfc03cf68bfb00
MD5 22e8ff6288a897bb9535b92ae7fd4d1d
BLAKE2b-256 c332de2e2f09885ed11e8204a9f88d89888f5afe74998d4737422c0bc4bff13c

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eb36432b476a09f71f8b5961e1d82fb328094324cfa4808a5899f42afe2e7ec7
MD5 6a21c8cdce14502d7fa908061170a1f1
BLAKE2b-256 4eefd3fa716da26a328f17368b7f0e22fe65bf0555b78dec2b1a909a595021a7

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8be2a86e03e21e2fe988e66780d1f5986e698d37397d3e282cbb70c5db68b5f7
MD5 f9ef15925174216b341478b3c643c487
BLAKE2b-256 7d3174bee5f05f24bcc7c9ee21ca3356c8132d38f059c442e4f7258a1a8863ef

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7db58d8f9cad500d42f114fb5f45ab752fc35a69d28c768a7ae8bc7edb7c9561
MD5 7ee7e08449939b69ecc739f472778591
BLAKE2b-256 0ac8a78788bac1f6d03c288fd5d3d77468e476ab942a2cafc85b1d9af706b433

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a44716b47f18638bfe29ae87b4b90573ca22f88c545047cfc07fbae728bf56a
MD5 e24bfe5c5bb6fe98d52dc96e450ed53b
BLAKE2b-256 cce1c437ca24b5ed6cd76cdee6a447e8d92acb13c65c0cc576e0e68b965242d8

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 309ff2b68b6b71561ba84897b772cd2ea877a571e6bc08ea4a61af6366d998c3
MD5 3d955c4c74683e7f66247c68ffc6f5cb
BLAKE2b-256 2113529b0dc02112b7e7f22ae10b7c49ccf92b9f87f4b381e71eebaad18a0a90

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c347d9fc5ddc09f20093f10e06c882099864438902f1bd3d2d0e07d5f27f9cc
MD5 d81439240e444a3ad1ed93063ab77933
BLAKE2b-256 3d0be965d6f778775a25c3ea8b88356ad78d91171d85411e7439e1d0be8bd8d5

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9bba731f161578c5b5d2407cc7072418debe784a68e564480c2a882361863a62
MD5 818b72e350b9c69c66c9ea67183afdfe
BLAKE2b-256 dd0440e99c9d1d3129cdadc55369184e7beaf4f268204eb9dd83fd2cb0536904

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7e1b7581c0a013f13c38865e9fb3874e2275d3cb326ffa48dd11eea9b5b7daa
MD5 9de8fe21289dc66781bbde56ac2396de
BLAKE2b-256 1977b4caa6e99b6dcae618cb55dad37f3a46efd5c9d9acb869734adf0a608c40

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6346c6a91d8958bf2bd550130998a4e786a357d3cd20d6c7d58eefa14e830534
MD5 d9221d7f03da2f2c40c1585c532c4cb6
BLAKE2b-256 4c2bfb814cc6bdd2db40e2747c0dacf3f3189fcf89b0e7413831dd8384f50fb0

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 197982e0ab2b4b26fa94203a6138433cc324f3d7398f13deae736358ae69d0fd
MD5 c8e66e2841e8142a30729263bd8817c9
BLAKE2b-256 af1d703527083a453eb787323d5a4a4fbde77a46f7d9abcea81e0aa652a6ebb1

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: ncls-0.0.68-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 763.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ncls-0.0.68-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6cbe316a9e47c087a69be63cce457b358396a1147b1bfc5420f39d6152ae157e
MD5 ec7a18ef099634003b7f583c884a68e5
BLAKE2b-256 24c719fb8dbbd2fc266066f4bf2bc730170cf65feda2057cc45ba3ca02fa4ccb

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp311-cp311-win32.whl.

File metadata

  • Download URL: ncls-0.0.68-cp311-cp311-win32.whl
  • Upload date:
  • Size: 725.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ncls-0.0.68-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 04ec4589c8dec4eddeac722c24a79fa411adc6e61ddd5a43e4b06d17c1bb007e
MD5 62e49bef7447cf6eda51a638d30642a0
BLAKE2b-256 866cbc96a1c5ea0c8777ed53d21161ffbe62b3274fc4663746c46b4667a0d544

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 232e20be1f60595eb980b1c7251c8c1cb6cc7d9f1106f7070fd5790712befa08
MD5 837f119d2816b0d15fd12db2be43a91a
BLAKE2b-256 60f1ca872a13c1c47e41dc8ed73cb936b19aab3d2cb24f44295c4134de56bbb4

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5150c05b79537e9be0571537ffefa246ae6b64d62bf6caa4e8a78e56a73bdb47
MD5 e4c398855515592db57fe897a9e8c128
BLAKE2b-256 5efc50d93e163d11602335b25e18e54b8cb58634427496dd8406cb2284e86c6a

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d82c099ff0bc57fe38c018bcab20f2e7da819f3cb5167d475e22f1bcd1bdeae8
MD5 9ef54af54b89976b9f1e1e74c266ebf4
BLAKE2b-256 bf8e1be8a0ec04091213f0f8f8a3ec87845f7352f6fe1e72181c1fe0ef88e620

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4ded131057fbe6d5d801b09a55ecaab3c5737a3b44950ce9031489cf8082ef58
MD5 eeea47b1dea032f025f78592dd8cf8ad
BLAKE2b-256 a89d9d7b256896ef139bc336e5129d6a887f444a1437a76292c81fda98b1d919

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2738326cb1eac9c5d9e94f950ce5ac3113af3318568c85e9d04dfd97ef399798
MD5 9e4ebbf4461ecae4227e55db0c44514e
BLAKE2b-256 d0bbd9beb53d04f851faa0610f03de107f35dfe125a59cb69c26e9dace7dbf23

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: ncls-0.0.68-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 765.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ncls-0.0.68-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2f97e23aaebe126d1dbbfb5d9830c85b140cae03dbecbc24e3f4b1e01e56c383
MD5 bcea37d7ac545da42fcb064b0dc01efe
BLAKE2b-256 dcf1adc1d18d0b4692bcf4e4b0798e7c997398dbe5a69ade78035d648bf54fb6

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp310-cp310-win32.whl.

File metadata

  • Download URL: ncls-0.0.68-cp310-cp310-win32.whl
  • Upload date:
  • Size: 727.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ncls-0.0.68-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e19a94ac781dcab1e46f8d89f596687ee13745cb402414586dbf1c4dab47338b
MD5 318b72f926c1421af6ce90983a1a26a0
BLAKE2b-256 4a6f245f92464ac85fe8608f54c32b9140ffcc3629cd3689a5846b0747303a25

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 94b64e294cd42f45989b6f49263108e114a6410d013f39778712f52bee9de52e
MD5 22f514f28bd416b61fcae72c259b363f
BLAKE2b-256 ff8d7caef445cf60273981d9790f935eef320e00ced85ffa9a2c9cfef0abfb84

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3eceb9c63e2d2c87cec79082c9907eae6c84800714e614701a890167b4063df2
MD5 944f9e604c94b5b8896526fdaa63e390
BLAKE2b-256 51c1b6075bdadd05859ab53e6cc4d0d7c4969306fe98ebc237661bac0b5ce0d7

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f67cb6531e4044663d89d27ff7baf0cf69e253751663aac84798e282ce8cfdd2
MD5 c7d61df62193f7334eed2119a13b6f78
BLAKE2b-256 fc1930f84863a8f6a4b3ed4bf886a7261549c2189e938945711cfbd2cca386a3

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 012f997b767fb68b43bbad49fc8129cf14d742022234d7dc6fb3d01dd5b6b1b0
MD5 2eb03f531c8407f7e74b1c3abfc990cd
BLAKE2b-256 e2ca1f43aafdf066085f48f4d3712bd4aa2091631ad1953964c408ab5e76284e

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2b0ec9876a5184ac07a11cf1bde6bbfbeb5f5a18943e213fee41233fd93c6f53
MD5 582c361c07907dcd7ac4716ae3f4225d
BLAKE2b-256 d120fb79a4f98777fda85c692b9be1a3a4f43b1b4e66f8122f2ce6c414ff04c1

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ncls-0.0.68-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 772.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ncls-0.0.68-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9455875acc2096fd64c38913445f2e858016aa1b9a09bcd371541a4f81302aca
MD5 bb990a9e06d18b2f6963f8b23cfd7f3e
BLAKE2b-256 e802eea95bb8dbdb145093f6628f2b2ee59376f32b18f3b100b03d419282865e

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp39-cp39-win32.whl.

File metadata

  • Download URL: ncls-0.0.68-cp39-cp39-win32.whl
  • Upload date:
  • Size: 738.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ncls-0.0.68-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b6403dd279c4696efd3ae697a20dfc1dd7ace0e54f816ee0ad91cf21fc57346a
MD5 4925dd5931107e35891f64ce421176bc
BLAKE2b-256 1e8519a07d96b19e188569485874802f3fc953a184edfb082c88f0f2b1220012

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 36d3412d19bf77200c24d9f72e14d1500171268f715296e076d468c7291476e4
MD5 b61688672978cc87b7408bba8e9c652c
BLAKE2b-256 a2c434d4e848f9ff55964251c277c8f55da44922f9711f8d46695ef007c4dbd0

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 988f63ab36fb949ee5177c4384a0b7edf9e284a7cd5d4c590219b79df7caa6ea
MD5 03911b74e88e8fcc2ef11d20e7d0c476
BLAKE2b-256 b36ead3bcd5f3171fa7a05af271fda219029c09d1d59df15c665dc72b44ee72e

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 906af9e789412ef6d0a8b08d6870b40d39304865973f550b0eb6994d3d3217e8
MD5 06e416ee13839833ecab349e7115ab7a
BLAKE2b-256 858610fbefe30a47c36d041966d9ddbb208fcfd15cf02bc2e57abac9fab186cd

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c7312b2c7f97b7c91a31feeb53462301c15af286676932d3ae92371cbe57174c
MD5 e5a98e9e2334405a83eb6206b573b88d
BLAKE2b-256 f19d30187f9e29948b35a5f7a50c859c63b75c151af618498fc79cf5679e5aa8

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf9591296bd8c5ac722baf59512317b6e029bd832c5d25e5d8b01a4addc4388e
MD5 9d4a34bf8785323d20a15e2b21721f3f
BLAKE2b-256 8db62439ceeffb0577576176fab1f22872810e59860add6ad2aec6e9a2c08b90

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ncls-0.0.68-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 773.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ncls-0.0.68-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6e069b3d2523e73ec4f0588b29cfa0cc3af739cdad7f53b6c8d68ceb5930dbdf
MD5 c70dec2b0e1352b7e0354e36f8844116
BLAKE2b-256 338c9a0d08b01dfe34188fe86395e6023f2d155d7bd14734ca50329f37b74fa3

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp38-cp38-win32.whl.

File metadata

  • Download URL: ncls-0.0.68-cp38-cp38-win32.whl
  • Upload date:
  • Size: 738.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ncls-0.0.68-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 1e3e1111628388fd8b957c8c293c76ed4cfbcf5491c11d8d251edfb30e23edd6
MD5 e05ce30aff0faff58243db061e1add86
BLAKE2b-256 1f1d92931907656b8732b9841c25a85a445c73a16d841524a386453dabb9545c

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8dec914444a3208c2220b49f9afa2790ac2f1cee758afc0a488b8f814a24b0c3
MD5 24b94aede19a872a7567fbad3e08fb6e
BLAKE2b-256 bf998ba53cb12bcf4ec91854324dba2b6bbd43bfc1975b52818ee73a537971e5

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2b9ba8760f2a9b83a22271fe5e899ad85658325e010bc68dde62327a9d3979f8
MD5 35f531e7f608e471764ece7508f5e5da
BLAKE2b-256 7cd64353cd18126ac27e283053487bfbeb9663953eaf5cdfcd640ac54f38e385

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6553f2121e933e8bf816cfc3bdea2fc2d2d2ccaec41c7a72f57c0e7ba2dc6d9
MD5 9390bd4a47f3af6cc7f6304b313546d1
BLAKE2b-256 72b246623ec63889b8354897dca2843617f8a4a590765e634c02b7e2572681f5

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2243c31ed0101768561e43abaffafe9c5783140f121416f072db922c197469cd
MD5 ec6e9847dc7aabc5135ffab60633e12e
BLAKE2b-256 db952876009aae587b3a5f97ed034ad31e40fe888336ae42212d6b3966ace0ea

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b201c8298d8b23b49f8f1c75a462f9a0a59db3a151f01a332667c808ae62bd79
MD5 d607796750465f9214e78875d8267560
BLAKE2b-256 5e83398cb92307564ccd80cf8a5d3e52eb3b7cd3cda2d9ea05025a5f1d4854ca

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ncls-0.0.68-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 767.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ncls-0.0.68-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 51db112d667899e727db8a58469fee7c50cf6a78d6c7a1068b1091302ab3190b
MD5 9c8366a27cdb346fceb43e2373f72e3a
BLAKE2b-256 5fc6ae9d5d0277b2aaa704b8c375732408ada589e58e8d4b32cc8b2b354955ac

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp37-cp37m-win32.whl.

File metadata

  • Download URL: ncls-0.0.68-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 731.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ncls-0.0.68-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e27b504899dc2278fc6d9eb14b8226b1a64fb5cb7d1e12ff6dd1ffc6449aae08
MD5 8eddeaea0acc71d881153e28dce4bf01
BLAKE2b-256 31c9ee9308e48d700ed21c9f305b63a830ea165a22a3a0da2940cf10fb9383df

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 557556ebf9fc437ef75a2626130c70085bbe389d08dfc73a1fd6ccbc67b5fa3d
MD5 70c8a1913c74426cee198317005e84a5
BLAKE2b-256 0f26f2712886e0db9b79f83887ae1854ced3cef01581ee87a8eddcf70236d3cd

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6e27da7e43f63a5a55bd6573cdd90f4b22f81ce28527392ba830be56829f942a
MD5 c6fc34d82801583f321e65f688f04275
BLAKE2b-256 31011bdc85ff3e7c715c6366b8f81add3334560f5d921faabcd85e28f15fc952

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ff5042a0ac6ff40ba14ba127c5d5f7fdc988b8ebdbeb463ec0e56e50578557a
MD5 0658a9cd9109598c164b4bd24e5c4693
BLAKE2b-256 dd8317dfe41013dfc56d3fedd31eb596d4ae11b07189c5df29f76cd74a69db1a

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 06291311f8a1e61c9dce55af06c16cf6407d7b490f29baa266c85161818b6d92
MD5 490108fb1bbe2db5cda99b104dbd0496
BLAKE2b-256 04ebcb3286f8d42c68c33bad75667faf423056cc4be7dc36b6a6a475ff902647

See more details on using hashes here.

File details

Details for the file ncls-0.0.68-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncls-0.0.68-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8730ab749b00796a044fe0ed12a0393d92327bddbc3d27760be7b0c67e9ef076
MD5 29b0213a006080fc9c84417c38787452
BLAKE2b-256 889045008b13b5b2c5c65381d2ee7f79f99fc4399893d49b7309f08689c33a87

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page